A124283 4-almost primes indexed by primes.
24, 36, 54, 60, 90, 104, 136, 150, 189, 225, 232, 294, 308, 328, 344, 375, 441, 459, 488, 510, 516, 550, 570, 621, 676, 708, 714, 738, 748, 776, 852, 860, 884, 910, 999, 1014, 1060, 1096, 1112, 1161, 1197, 1206, 1256, 1274, 1284, 1290, 1356, 1432, 1450, 1482
Offset: 1
Examples
a(1) = 4almostprime(prime(1)) = 4almostprime(2) = 24. a(2) = 4almostprime(prime(2)) = 4almostprime(3) = 36. a(3) = 4almostprime(prime(3)) = 4almostprime(5) = 54.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Python
from math import isqrt from sympy import prime, primepi, integer_nthroot, primerange def A124283(n): def f(x): return int(prime(n)+x-sum(primepi(x//(k*m*r))-c for a, k in enumerate(primerange(integer_nthroot(x, 4)[0]+1)) for b, m in enumerate(primerange(k, integer_nthroot(x//k, 3)[0]+1), a) for c, r in enumerate(primerange(m, isqrt(x//(k*m))+1), b))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f,n,n) # Chai Wah Wu, Sep 09 2024
Extensions
a(17)-a(50) from Giovanni Resta, Jun 13 2016
Comments