A124284 Prime(4almostprime(n))-4almostprime(prime(n)). Commutator [A000040,A014613] at n.
29, 53, 97, 113, 161, 159, 145, 269, 244, 232, 231, 247, 261, 373, 399, 386, 328, 350, 375, 371, 395, 547, 559, 572, 537, 541, 577, 635, 679, 663, 607, 621, 687, 673, 658, 769, 871, 853, 839, 856, 832, 881, 947, 939, 1003, 1007, 955, 915, 907, 889, 941, 989
Offset: 1
Examples
a(1) = prime(4almostprime(1)) - 4almostprime(prime(1)) = 53 - 24 = 29. a(2) = prime(4almostprime(2)) - 4almostprime(prime(2)) = 89 - 36 = 53. a(3) = prime(4almostprime(3)) - 4almostprime(prime(3)) = 151 - 54 = 97. It is mere coincidence that the first 4 values are all primes.
Links
- Robert G. Wilson v, Table of n, a(n) for n=1..1000
Crossrefs
Cf. Primes indexed by 4-almost primes = A124282. 4-almost primes indexed by primes = A124283. Primes indexed by 3-almost primes = A124268. 3-almost primes indexed by primes = A124269. prime(3almostprime(n)) - 3almostprime(prime(n)) = A124270. See also A106349 Primes indexed by semiprimes. See also A106350 Semiprimes indexed by primes. See also A122824 Prime(semiprime(n)) - semiprime(prime(n)).
Programs
-
Mathematica
FourAlmostPrimePi[n_] := Sum[PrimePi[n/(Prime@i*Prime@j*Prime@k)] - k + 1, {i, PrimePi[n^(1/4)]}, {j, i, PrimePi[(n/Prime@i)^(1/3)]}, {k, j, PrimePi@ Sqrt[n/(Prime@i*Prime@j)]}]; FourAlmostPrime[n_] := Block[{e = Floor[Log[2, n] + 1], a, b}, a = 2^e; Do[b = 2^p; While[ FourAlmostPrimePi@a < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ Prime@ FourAlmostPrime@ n - FourAlmostPrime@ Prime@ n, {n, 52}]
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot, prime def A124284(n): def f(x): return int(x-sum(primepi(x//(k*m*r))-c for a,k in enumerate(primerange(integer_nthroot(x,4)[0]+1)) for b,m in enumerate(primerange(k,integer_nthroot(x//k,3)[0]+1),a) for c,r in enumerate(primerange(m,isqrt(x//(k*m))+1),b))) m, k = n, f(n)+n while m != k: m, k = k, f(k)+n r, k = (p:=prime(n)), f(p)+p while r != k: r, k = k, f(k)+p return prime(m)-r # Chai Wah Wu, Aug 17 2024
Formula
Extensions
More terms from Robert G. Wilson v, Aug 31 2007