A124285 Number of integer-sided pentagons having perimeter n.
0, 0, 0, 0, 1, 1, 3, 4, 9, 13, 23, 29, 48, 60, 92, 109, 158, 186, 258, 296, 397, 451, 589, 658, 841, 933, 1169, 1283, 1582, 1728, 2100, 2275, 2732, 2948, 3502, 3756, 4419, 4725, 5511, 5866, 6789, 7207, 8283, 8761, 10006, 10560, 11990, 12617, 14250, 14968
Offset: 1
Keywords
Examples
The three pentagons having perimeter 7 are (1,1,1,2,2), (1,1,2,1,2) and (1,1,1,1,3).
Links
- James East, Ron Niles, Integer polygons of given perimeter, arXiv:1710.11245 [math.CO], 2017.
Programs
-
Mathematica
Needs["DiscreteMath`Combinatorica`"]; Table[s=Select[Partitions[n], Length[ # ]==5 && #[[1]]
Formula
Empirical g.f.: -x^5*(x^12 +2*x^9 +2*x^8 +2*x^7 +5*x^6 +3*x^5 +2*x^4 +2*x^3 +x^2 +x +1) / ((x -1)^5*(x +1)^4*(x^2 +1)^2*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Oct 27 2013
Comments