A124304 Riordan array (1, x*(1-x^2)).
1, 0, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, -2, 0, 1, 0, 0, 0, -3, 0, 1, 0, 0, 1, 0, -4, 0, 1, 0, 0, 0, 3, 0, -5, 0, 1, 0, 0, 0, 0, 6, 0, -6, 0, 1, 0, 0, 0, -1, 0, 10, 0, -7, 0, 1, 0, 0, 0, 0, -4, 0, 15, 0, -8, 0, 1, 0, 0, 0, 0, 0, -10, 0, 21, 0, -9, 0, 1, 0, 0, 0, 0, 1, 0, -20, 0, 28, 0, -10, 0, 1
Offset: 0
Examples
Triangle begins 1; 0, 1; 0, 0, 1; 0, -1, 0, 1; 0, 0, -2, 0, 1; 0, 0, 0, -3, 0, 1; 0, 0, 1, 0, -4, 0, 1; 0, 0, 0, 3, 0, -5, 0, 1; 0, 0, 0, 0, 6, 0, -6, 0, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
Crossrefs
Programs
-
Magma
A124304:= func< n,k | (&+[(-1)^j*Binomial(k,k-j)*Binomial(k,n-k-j) : j in [0..n]]) >; [A124304(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 18 2023
-
Mathematica
A124304[n_, k_]:= Binomial[k, (n-k)/2]*(-1)^((n-k)/2)*(1+(-1)^(n-k))/2; Table[A124304[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 18 2023 *)
-
SageMath
def A124304(n, k): return binomial(k, (n-k)//2)*(-1)^((n-k)//2)*(1+(-1)^(n-k))/2 flatten([[A124304(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Aug 18 2023
Formula
T(n, k) = Sum_{j=0..n} C(k,k-j)*C(k,n-k-j)*(-1)^j.
T(n, k) = C(k,(n-k)/2)*(-1)^((n-k)/2)*(1 + (-1)^(n-k))/2.
Sum_{k=0..n} T(n, k) = A050935(n+2).
Sum_{k=0..floor(n/2)} T(n-k, k) = A014021(n).
T(2*n, n) = (1 - 2*0^(n+2 mod 4))*A126869(n).
From G. C. Greubel, Aug 18 2023: (Start)
T(2*n-1, n-1) = (1 - 2*0^(n+1 mod 4))*A138364(n-1).
T(2*n-1, n+1) = (1 - 2*0^(n mod 4))*((1+(-1)^n)/2)*A002054(floor(n/2)).
Sum_{k=0..n} (-1)^k*T(n, k) = A176971(n+3).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1 - 2*0^(n+2 mod 4))*A079977(n).
G.f.: 1/(1 - x*y*(1-x^2)). (End)
Comments