cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A124304 Riordan array (1, x*(1-x^2)).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, -2, 0, 1, 0, 0, 0, -3, 0, 1, 0, 0, 1, 0, -4, 0, 1, 0, 0, 0, 3, 0, -5, 0, 1, 0, 0, 0, 0, 6, 0, -6, 0, 1, 0, 0, 0, -1, 0, 10, 0, -7, 0, 1, 0, 0, 0, 0, -4, 0, 15, 0, -8, 0, 1, 0, 0, 0, 0, 0, -10, 0, 21, 0, -9, 0, 1, 0, 0, 0, 0, 1, 0, -20, 0, 28, 0, -10, 0, 1
Offset: 0

Views

Author

Paul Barry, Oct 25 2006

Keywords

Comments

T(2n,n) is a signed aerated version of C(2n,n).
Inverse is A124305.

Examples

			Triangle begins
  1;
  0,  1;
  0,  0,  1;
  0, -1,  0,  1;
  0,  0, -2,  0,  1;
  0,  0,  0, -3,  0,  1;
  0,  0,  1,  0, -4,  0,  1;
  0,  0,  0,  3,  0, -5,  0,  1;
  0,  0,  0,  0,  6,  0, -6,  0,  1;
		

Crossrefs

Cf. A014021 (diagonal sums), A050935 (row sums), A124305 (inverse).

Programs

  • Magma
    A124304:= func< n,k | (&+[(-1)^j*Binomial(k,k-j)*Binomial(k,n-k-j) : j in [0..n]]) >;
    [A124304(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 18 2023
    
  • Mathematica
    A124304[n_, k_]:= Binomial[k, (n-k)/2]*(-1)^((n-k)/2)*(1+(-1)^(n-k))/2;
    Table[A124304[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 18 2023 *)
  • SageMath
    def A124304(n, k): return binomial(k, (n-k)//2)*(-1)^((n-k)//2)*(1+(-1)^(n-k))/2
    flatten([[A124304(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Aug 18 2023

Formula

T(n, k) = Sum_{j=0..n} C(k,k-j)*C(k,n-k-j)*(-1)^j.
T(n, k) = C(k,(n-k)/2)*(-1)^((n-k)/2)*(1 + (-1)^(n-k))/2.
Sum_{k=0..n} T(n, k) = A050935(n+2).
Sum_{k=0..floor(n/2)} T(n-k, k) = A014021(n).
T(2*n, n) = (1 - 2*0^(n+2 mod 4))*A126869(n).
From G. C. Greubel, Aug 18 2023: (Start)
T(2*n-1, n-1) = (1 - 2*0^(n+1 mod 4))*A138364(n-1).
T(2*n-1, n+1) = (1 - 2*0^(n mod 4))*((1+(-1)^n)/2)*A002054(floor(n/2)).
Sum_{k=0..n} (-1)^k*T(n, k) = A176971(n+3).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1 - 2*0^(n+2 mod 4))*A079977(n).
G.f.: 1/(1 - x*y*(1-x^2)). (End)

A124790 A generalized Motzkin triangle.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 3, 4, 3, 2, 1, 0, 6, 9, 6, 5, 2, 1, 0, 15, 21, 15, 12, 6, 3, 1, 0, 36, 51, 36, 30, 15, 9, 3, 1, 0, 91, 127, 91, 76, 40, 25, 10, 4, 1, 0, 232, 323, 232, 196, 105, 69, 29, 14, 4, 1
Offset: 0

Views

Author

Paul Barry, Nov 07 2006

Keywords

Comments

Columns include A005043, A001006, A002026. Row sums are A124791. For even k, column k has g.f. x^k*M(x)^(k/2), where M(x)=2/(1-x+sqrt(1-2x-3x^2)) is the g.f. of A001006. For odd k, column k has g.f. x^k*S(x)*M(x)^floor(k/2), S(x)=(1+x-sqrt(1-2x-3x^2))/(2x(1+x)), the g.f. of A005043.

Examples

			Triangle begins
1,
0, 1,
0, 0, 1,
0, 1, 1, 1,
0, 1, 2, 1, 1,
0, 3, 4, 3, 2, 1,
0, 6, 9, 6, 5, 2, 1,
0, 15, 21, 15, 12, 6, 3, 1,
0, 36, 51, 36, 30, 15, 9, 3, 1,
0, 91, 127, 91, 76, 40, 25, 10, 4, 1,
0, 232, 323, 232, 196, 105, 69, 29, 14, 4, 1
Production matrix begins
0, 1,
0, 0, 1,
0, 1, 1, 1,
0, 0, 0, 0, 1,
0, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1
- _Paul Barry_, Apr 07 2011
		

Formula

Triangle is the product of A124788 and A124305, that is, it is the product of the expansion of (1+x*y)/(1-x^2*y^2-x^3*y^2) and the inverse of the Riordan array (1,x(1-x^2)).

A124816 Product of Riordan array (1,x(1-x^2))^(-1) and number triangle T(n,k)=C(floor(k/2),n-k).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 1, 1, 0, 3, 3, 3, 2, 1, 0, 0, 7, 4, 5, 2, 1, 0, 12, 12, 12, 10, 6, 3, 1, 0, 0, 30, 18, 24, 12, 9, 3, 1, 0, 55, 55, 55, 50, 32, 22, 10, 4, 1, 0, 0, 143, 88, 121, 66, 57, 25, 14, 4, 1, 0, 273, 273, 273
Offset: 0

Views

Author

Paul Barry, Nov 08 2006

Keywords

Comments

Product of A124305 and A124788. Columns include aerated A001764,A047749(n+1),A124817,A084081. Row sums are A124818.

Examples

			Triangle begins
1,
0, 1,
0, 0, 1,
0, 1, 1, 1,
0, 0, 2, 1, 1,
0, 3, 3, 3, 2, 1,
0, 0, 7, 4, 5, 2, 1,
0, 12, 12, 12, 10, 6, 3, 1,
0, 0, 30, 18, 24, 12, 9, 3, 1,
0, 55, 55, 55, 50, 32, 22, 10, 4, 1
		

Crossrefs

Cf. A124790.
Showing 1-3 of 3 results.