cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124316 a(n) = Sum_{d|n} sigma(gcd(d,n/d)), where sigma is the sum of divisors function, A000203.

Original entry on oeis.org

1, 2, 2, 5, 2, 4, 2, 8, 6, 4, 2, 10, 2, 4, 4, 15, 2, 12, 2, 10, 4, 4, 2, 16, 8, 4, 10, 10, 2, 8, 2, 22, 4, 4, 4, 30, 2, 4, 4, 16, 2, 8, 2, 10, 12, 4, 2, 30, 10, 16, 4, 10, 2, 20, 4, 16, 4, 4, 2, 20, 2, 4, 12, 37, 4, 8, 2, 10, 4, 8, 2, 48, 2, 4, 16, 10, 4, 8, 2, 30, 23, 4, 2, 20, 4, 4, 4, 16, 2, 24
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2006

Keywords

Comments

Apparently multiplicative and the inverse Mobius transform of A069290. - R. J. Mathar, Feb 07 2011

Crossrefs

Programs

  • Maple
    A124316 := proc(n) local a,d;
      a := 0 ;
      for d in numtheory[divisors](n) do
         igcd(d,n/d) ;
         a := a+numtheory[sigma](%) ;
       end do:
       a;
    end proc: # R. J. Mathar, Apr 14 2011
  • Mathematica
    Table[Plus @@ Map[DivisorSigma[1, GCD[ #, n/# ]] &, Divisors@n], {n, 90}]
    f[p_, e_] := (If[OddQ[e], 2*p^((e+3)/2), p^(e/2 + 1)*(p+1)] - (e+3)*p + e + 1)/(p-1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 28 2024 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(gcd(d, n/d))); \\ Michel Marcus, Feb 13 2016
    
  • Python
    from sympy import divisors, divisor_sigma, gcd
    def a(n): return sum([divisor_sigma(gcd(d, n/d)) for d in divisors(n)]) # Indranil Ghosh, May 25 2017

Formula

From Amiram Eldar, Mar 28 2024: (Start)
Multiplicative with a(p^e) = (p^(e/2 + 1)*(p+1) - (e+3)*p + e + 1)/(p-1)^2, if e is even, and (2*p^((e+3)/2) - (e+3)*p + e + 1)/(p-1)^2 if e is odd.
Dirichlet g.f.: zeta(s)^2 * zeta(2*s-1).
Sum_{k=1..n} a(k) = (log(n)^2/4 + (2*gamma - 1/2)*log(n) + 5*gamma^2/2 - 2*gamma - 3*gamma_1 + 1/2) * n + O(n^(2/3)*log(n)^(16/9)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633) (Krätzel et al., 2012). (End)