A124316 a(n) = Sum_{d|n} sigma(gcd(d,n/d)), where sigma is the sum of divisors function, A000203.
1, 2, 2, 5, 2, 4, 2, 8, 6, 4, 2, 10, 2, 4, 4, 15, 2, 12, 2, 10, 4, 4, 2, 16, 8, 4, 10, 10, 2, 8, 2, 22, 4, 4, 4, 30, 2, 4, 4, 16, 2, 8, 2, 10, 12, 4, 2, 30, 10, 16, 4, 10, 2, 20, 4, 16, 4, 4, 2, 20, 2, 4, 12, 37, 4, 8, 2, 10, 4, 8, 2, 48, 2, 4, 16, 10, 4, 8, 2, 30, 23, 4, 2, 20, 4, 4, 4, 16, 2, 24
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Ekkehard Krätzel, Werner Georg Nowak, and László Tóth, On certain arithmetic functions involving the greatest common divisor, Cent. Eur. J. Math., 10 (2012), 761-774.
- Manfred Kühleitner and Werner Georg Nowak, On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions, Cent. Eur. J. Math., Vol. 11, No. 3 (2013), pp. 477-486; arXiv preprint, arXiv:1204.1146 [math.NT], 2012.
- László Tóth, Multiplicative arithmetic functions of several variables: a survey, in: T. Rassias, P. Pardalos (eds.) Mathematics Without Boundaries, Springer, New York, NY, 2024; arXiv preprint, arXiv:1310.7053 [math.NT], 2013-2014.
Programs
-
Maple
A124316 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do igcd(d,n/d) ; a := a+numtheory[sigma](%) ; end do: a; end proc: # R. J. Mathar, Apr 14 2011
-
Mathematica
Table[Plus @@ Map[DivisorSigma[1, GCD[ #, n/# ]] &, Divisors@n], {n, 90}] f[p_, e_] := (If[OddQ[e], 2*p^((e+3)/2), p^(e/2 + 1)*(p+1)] - (e+3)*p + e + 1)/(p-1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 28 2024 *)
-
PARI
a(n) = sumdiv(n, d, sigma(gcd(d, n/d))); \\ Michel Marcus, Feb 13 2016
-
Python
from sympy import divisors, divisor_sigma, gcd def a(n): return sum([divisor_sigma(gcd(d, n/d)) for d in divisors(n)]) # Indranil Ghosh, May 25 2017
Formula
From Amiram Eldar, Mar 28 2024: (Start)
Multiplicative with a(p^e) = (p^(e/2 + 1)*(p+1) - (e+3)*p + e + 1)/(p-1)^2, if e is even, and (2*p^((e+3)/2) - (e+3)*p + e + 1)/(p-1)^2 if e is odd.
Dirichlet g.f.: zeta(s)^2 * zeta(2*s-1).
Comments