A124317 Semiprimes indexed by 3-almost primes.
22, 34, 51, 57, 82, 85, 87, 123, 133, 134, 146, 158, 201, 205, 209, 214, 221, 226, 237, 295, 305, 309, 321, 327, 341, 361, 365, 371, 394, 395, 413, 447, 478, 481, 497, 501, 529, 533, 543, 545, 551, 554, 559, 583, 597, 614, 623, 635, 689, 699, 734, 763, 766
Offset: 1
Examples
a(1) = semiprime(3almostprime(1)) = semiprime(8 = 2^3) = 22 = 2 * 11. a(2) = semiprime(3almostprime(2)) = semiprime(12 = 2^2 * 3) = 34 = 2 * 17. a(3) = semiprime(3almostprime(3)) = semiprime(18 = 2 * 3^2) = 51 = 3 * 17.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..5000
Crossrefs
Cf. A124318 3-almost primes indexed by semiprimes. A124319 semiprime(3almostprime(n)) - 3almostprime(semiprime(n)). A124308 Primes indexed by 5-almost primes. A124309 5-almost primes indexed by primes. A124310 prime(5almostprime(n)) - 5almostprime(prime(n)). 4-almost primes indexed by primes = A124283. prime(4almostprime(n)) - 4almostprime(prime(n)) = A124284. Primes indexed by 3-almost primes = A124268. 3-almost primes indexed by primes = A124269. prime(3almostprime(n)) - 3almostprime(prime(n)) = A124270. See also A106349 Primes indexed by semiprimes. See also A106350 Semiprimes indexed by primes. See also A122824 Prime(semiprime(n)) - semiprime(prime(n)). Commutator [A000040, A001358] at n.
Programs
-
Mathematica
p[k_] := Select[Range[1000], PrimeOmega[#] == k &]; p[2][[Take[p[3], 60]]] (* Giovanni Resta, Jun 13 2016 *)
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A124317(n): def f(x): return int(x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(x//k)+1),a))) def g(x): return int(x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1))) m, k = n, f(n)+n while m != k: m, k = k, f(k)+n r, k = m, g(m)+m while r != k: r, k = k, g(k)+m return r # Chai Wah Wu, Aug 17 2024
Extensions
Data corrected by Giovanni Resta, Jun 13 2016
Comments