A124319 Semiprime(3almostprime(n))-3almostprime(semiprime(n)). Commutator[A001358, A014612] at n.
2, 6, 7, 12, 16, 17, -11, 24, 23, 20, -1, 10, 48, 40, 39, 26, 14, 4, -1, 51, 60, 48, 48, 43, 31, 39, 22, 15, 37, 32, 39, 60, 90, 82, 68, 63, 64, 58, 66, 51, 53, 48, 28, 34, 42, 24, 28, 39, 87, 96, 106, 124, 124, 135, 131, 131, 88, 91, 72, 96, 103, 83, 83, 81, 91
Offset: 1
Examples
a(1) = semiprime(3almostprime(1)) - 3almostprime(semiprime(1)) = 22 - 20 = 2. a(2) = semiprime(3almostprime(2)) - 3almostprime(semiprime(2)) = 34 - 28 = 6. a(3) = semiprime(3almostprime(3)) - 3almostprime(semiprime(3)) = 51 - 44 = 7. a(4) = semiprime(3almostprime(4)) - 3almostprime(semiprime(4)) = 57 - 45 = 12. a(7) = semiprime(3almostprime(7)) - 3almostprime(semiprime(7)) = 87 - 98 = -11, which is the first negative value in the commutators we have seen in these related set of sequences, exposing an incorrect assumption.
Crossrefs
Cf. A124317 Semiprimes indexed by 3-almost primes. A124318 3-almost primes indexed by semiprimes. A124319 semiprime(3almostprime(n)) - 3almostprime(semiprime(n)). A124308 Primes indexed by 5-almost primes. A124309 5-almost primes indexed by primes. A124310 prime(5almostprime(n)) - 5almostprime(prime(n)). 4-almost primes indexed by primes = A124283. prime(4almostprime(n)) - 4almostprime(prime(n)) = A124284. Primes indexed by 3-almost primes = A124268. 3-almost primes indexed by primes = A124269. prime(3almostprime(n)) - 3almostprime(prime(n)) = A124270. See also A106349 Primes indexed by semiprimes. See also A106350 Semiprimes indexed by primes. See also A122824 Prime(semiprime(n)) - semiprime(prime(n)). Commutator [A000040, A001358] at n.
Programs
-
Mathematica
p[k_] := p[k] = Select[Range[1000], PrimeOmega[#] == k &]; p[2][[ Take[p[3], 70]]] - p[3][[Take[p[2], 70]]] (* Giovanni Resta, Jun 13 2016 *)
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A124319(n): def f(x): return int(x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(x//k)+1),a))) def g(x): return int(x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1))) def A001358(n): m, k = n, g(n)+n while m != k: m, k = k, g(k)+n return m m, k = n, f(n)+n while m != k: m, k = k, f(k)+n r, k = (p:=A001358(n)), f(p)+p while r != k: r, k = k, f(k)+p return A001358(m)-r # Chai Wah Wu, Aug 17 2024
Extensions
a(18) corrected and a(22)-a(65) from Giovanni Resta, Jun 13 2016