A124323 Triangle read by rows: T(n,k) is the number of partitions of an n-set having k singleton blocks (0<=k<=n).
1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 4, 4, 6, 0, 1, 11, 20, 10, 10, 0, 1, 41, 66, 60, 20, 15, 0, 1, 162, 287, 231, 140, 35, 21, 0, 1, 715, 1296, 1148, 616, 280, 56, 28, 0, 1, 3425, 6435, 5832, 3444, 1386, 504, 84, 36, 0, 1, 17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 0, 1
Offset: 0
Examples
T(4,2)=6 because we have 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3 and 1|2|34 (if we take {1,2,3,4} as our 4-set). Triangle starts: 1 0 1 1 0 1 1 3 0 1 4 4 6 0 1 11 20 10 10 0 1 41 66 60 20 15 0 1 162 287 231 140 35 21 0 1 715 1296 1148 616 280 56 28 0 1 3425 6435 5832 3444 1386 504 84 36 0 1 From _Gus Wiseman_, Feb 13 2019: (Start) Row n = 5 counts the following set partitions by number of singletons: {{1234}} {{1}{234}} {{1}{2}{34}} {{1}{2}{3}{4}} {{12}{34}} {{123}{4}} {{1}{23}{4}} {{13}{24}} {{124}{3}} {{12}{3}{4}} {{14}{23}} {{134}{2}} {{1}{24}{3}} {{13}{2}{4}} {{14}{2}{3}} ... and the following set partitions by number of cyclical adjacencies: {{13}{24}} {{1}{2}{34}} {{1}{234}} {{1234}} {{1}{24}{3}} {{1}{23}{4}} {{12}{34}} {{13}{2}{4}} {{12}{3}{4}} {{123}{4}} {{1}{2}{3}{4}} {{14}{2}{3}} {{124}{3}} {{134}{2}} {{14}{23}} (End) From _Paul Barry_, Apr 23 2009: (Start) Production matrix is 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 3, 0, 1, 1, 4, 6, 4, 0, 1, 1, 5, 10, 10, 5, 0, 1, 1, 6, 15, 20, 15, 6, 0, 1, 1, 7, 21, 35, 35, 21, 7, 0, 1, 1, 8, 28, 56, 70, 56, 28, 8, 0, 1 (End)
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- David Callan, On conjugates for set partitions and integer compositions, arXiv:math/0508052 [math.CO], 2005.
- T. Mansour, A. O. Munagi, Set partitions with circular successions, European Journal of Combinatorics, 42 (2014), 207-216.
Crossrefs
Programs
-
Maple
G:=exp(exp(z)-1+(t-1)*z): Gser:=simplify(series(G,z=0,14)): for n from 0 to 11 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,k),k=0..n) od; # yields sequence in triangular form # Program from R. J. Mathar, Jan 22 2015: A124323 := proc(n,k) binomial(n,k)*A000296(n-k) ; end proc:
-
Mathematica
Flatten[CoefficientList[Range[0,10]! CoefficientList[Series[Exp[x y] Exp[Exp[x] - x - 1], {x, 0,10}], x], y]] (* Geoffrey Critzer, Nov 24 2011 *) sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; Table[Length[Select[sps[Range[n]],Count[#,{}]==k&]],{n,0,9},{k,0,n}] (* _Gus Wiseman, Feb 13 2019 *)
Formula
T(n,k) = binomial(n,k)*[(-1)^(n-k)+sum((-1)^(j-1)*B(n-k-j), j=1..n-k)], where B(q) are the Bell numbers (A000110).
E.g.f.: G(t,z) = exp(exp(z)-1+(t-1)*z).
G.f.: 1/(1-xy-x^2/(1-xy-x-2x^2/(1-xy-2x-3x^2/(1-xy-3x-4x^2/(1-... (continued fraction). - Paul Barry, Apr 23 2009
Comments