A124376 Number triangle with column k generated by x^k*(1+2*k*x+C(k,2)*x^2)/(1-x)^(k+1).
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 19, 10, 1, 1, 13, 37, 37, 13, 1, 1, 16, 61, 92, 61, 16, 1, 1, 19, 91, 185, 185, 91, 19, 1, 1, 22, 127, 326, 440, 326, 127, 22, 1, 1, 25, 169, 525, 896, 896, 525, 169, 25, 1, 1, 28, 217, 792, 1638, 2072, 1638, 792, 217, 28, 1
Offset: 0
Examples
Triangle begins 1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 19, 10, 1, 1, 13, 37, 37, 13, 1, 1, 16, 61, 92, 61, 16, 1, 1, 19, 91, 185, 185, 91, 19, 1
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of triangle, flattened).
Programs
-
Mathematica
A124376[n_, k_] := Sum[Binomial[k, k-j]*Binomial[n-j, k]*Binomial[2, j], {j, 0, n}]; Table[A124376[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Feb 21 2025 *)
-
PARI
C(i,j) =binomial(i,j); T(n,k) = if (k<=n, sum(j=0, n, C(k,k-j)*C(n-j,k)*C(2,j))); row(n) = vector(n+1, k, T(n,k-1)); for (n=0, 10, print(row(n))) \\ Michel Marcus, Feb 19 2025
Formula
T(n,k) = Sum_{j=0..n} C(k,k-j)*C(n-j,k)*C(2,j)*[k<=n].
T(n,k) = T(n,n-k).
Extensions
More terms from Michel Marcus, Feb 19 2025