cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124380 O.g.f.: A(x) = Sum_{n>=0} x^n*Product_{k=0..n} (1 + k*x).

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 57, 157, 453, 1368, 4296, 13995, 47138, 163779, 585741, 2152349, 8113188, 31326760, 123748871, 499539900, 2058542819, 8651755865, 37054078481, 161591063250, 717032333816, 3235298221401, 14834735654080, 69085973044125
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2006

Keywords

Comments

The Kn11 triangle sums of A094638 are given by the terms of this sequence. For the definitions of this and other triangle sums see A180662. [Johannes W. Meijer, Apr 20 2011]

Examples

			A(x) = 1 + x*(1+x) + x^2*(1+x)*(1+2x) + x^3*(1+x)*(1+2x)*(1+3x) +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Sum[x^(2*k)*Pochhammer[1 + 1/x, k], {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 14 2024 *)
    Table[Sum[(-1)^k * StirlingS1[n+1-k, n+1-2*k], {k, 0, (n+1)/2}], {n, 0, 30}] (* Vaclav Kotesovec, Sep 18 2024 *)
  • PARI
    a(n)=polcoeff(sum(k=0,n,x^k*prod(j=0,k,1+j*x+x*O(x^n))),n)

Formula

O.g.f.: A(x) = 1 + x*(1+x)/(G(0) - x*(1+x)) ; G(k) = 1+x*(k*x+x+1) - x*(k*x + 2*x + 1)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Dec 02 2011
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - (1+x*k)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: 1/(x*Q(0)-1)/x^4 + (1+x-x^3)/x^4, where Q(k)= 1 - x/(1 - (k+1)*x - x*(k+1)/(x - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
Conjecture: log(a(n)) ~ n*log(n)/2 - n*(1 + log(2))/2. - Vaclav Kotesovec, Sep 18 2024