cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124392 A Fine number related number triangle.

Original entry on oeis.org

1, 2, 1, 7, 2, 1, 24, 8, 2, 1, 86, 28, 9, 2, 1, 314, 103, 32, 10, 2, 1, 1163, 382, 121, 36, 11, 2, 1, 4352, 1432, 456, 140, 40, 12, 2, 1, 16414, 5408, 1732, 536, 160, 44, 13, 2, 1, 62292, 20546, 6608, 2064, 622, 181, 48, 14, 2, 1, 237590, 78436, 25314, 7960, 2429, 714, 203, 52, 15, 2, 1
Offset: 0

Views

Author

Paul Barry, Oct 30 2006

Keywords

Comments

First column is A014300. Second column is A114590. Row sums are A001700. Array is given by (f(x)/(x*sqrt(1-4x)), f(x)) where f(x) is g.f. of Fine numbers A000957.

Examples

			Triangle begins
      1;
      2,    1;
      7,    2,    1;
     24,    8,    2,   1;
     86,   28,    9,   2,   1;
    314,  103,   32,  10,   2,  1;
   1163,  382,  121,  36,  11,  2,  1;
   4352, 1432,  456, 140,  40, 12,  2, 1;
  16414, 5408, 1732, 536, 160, 44, 13, 2, 1;
		

Crossrefs

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> Binomial(n-j, k)*Binomial(2*j, n-k) ))); # G. C. Greubel, Dec 25 2019
  • Magma
    [(&+[Binomial(n-j, k)*Binomial(2*j, n-k): j in [0..n-k]]): k in [0..n], n in [0.10]]; // G. C. Greubel, Dec 25 2019
    
  • Maple
    seq(seq( add(binomial(n-j, k)*binomial(2*j, n-k), j=0..n-k), k=0..n), n=0..10); # G. C. Greubel, Dec 25 2019
  • Mathematica
    Table[Sum[Binomial[n-j, k]*Binomial[2*j, n-k], {j,0,n-k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 25 2019 *)
  • PARI
    T(n,k) = sum(j=0, n-k, binomial(n-j, k)*binomial(2*j, n-k)); \\ G. C. Greubel, Dec 25 2019
    
  • Sage
    [[sum(binomial(n-j, k)*binomial(2*j, n-k) for j in (0..n-k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 25 2019
    

Formula

Riordan array ( 1/(x*sqrt(1-4*x)) * (1-sqrt(1-4*x))/(3-sqrt(1-4*x)), (1-sqrt(1-4*x))/(3-sqrt(1-4*x)) ).
Number triangle T(n, k) = Sum_{j=0..n-k} C(n-j, k)*C(2*j, n-k).