A124392 A Fine number related number triangle.
1, 2, 1, 7, 2, 1, 24, 8, 2, 1, 86, 28, 9, 2, 1, 314, 103, 32, 10, 2, 1, 1163, 382, 121, 36, 11, 2, 1, 4352, 1432, 456, 140, 40, 12, 2, 1, 16414, 5408, 1732, 536, 160, 44, 13, 2, 1, 62292, 20546, 6608, 2064, 622, 181, 48, 14, 2, 1, 237590, 78436, 25314, 7960, 2429, 714, 203, 52, 15, 2, 1
Offset: 0
Examples
Triangle begins 1; 2, 1; 7, 2, 1; 24, 8, 2, 1; 86, 28, 9, 2, 1; 314, 103, 32, 10, 2, 1; 1163, 382, 121, 36, 11, 2, 1; 4352, 1432, 456, 140, 40, 12, 2, 1; 16414, 5408, 1732, 536, 160, 44, 13, 2, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
Flat(List([0..10], n-> List([0..n], k-> Binomial(n-j, k)*Binomial(2*j, n-k) ))); # G. C. Greubel, Dec 25 2019
-
Magma
[(&+[Binomial(n-j, k)*Binomial(2*j, n-k): j in [0..n-k]]): k in [0..n], n in [0.10]]; // G. C. Greubel, Dec 25 2019
-
Maple
seq(seq( add(binomial(n-j, k)*binomial(2*j, n-k), j=0..n-k), k=0..n), n=0..10); # G. C. Greubel, Dec 25 2019
-
Mathematica
Table[Sum[Binomial[n-j, k]*Binomial[2*j, n-k], {j,0,n-k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 25 2019 *)
-
PARI
T(n,k) = sum(j=0, n-k, binomial(n-j, k)*binomial(2*j, n-k)); \\ G. C. Greubel, Dec 25 2019
-
Sage
[[sum(binomial(n-j, k)*binomial(2*j, n-k) for j in (0..n-k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 25 2019
Formula
Riordan array ( 1/(x*sqrt(1-4*x)) * (1-sqrt(1-4*x))/(3-sqrt(1-4*x)), (1-sqrt(1-4*x))/(3-sqrt(1-4*x)) ).
Number triangle T(n, k) = Sum_{j=0..n-k} C(n-j, k)*C(2*j, n-k).
Comments