A124399 a(n) = 4^(n - bitcount(n)) where bitcount(n) = A000120(n).
1, 1, 4, 4, 64, 64, 256, 256, 16384, 16384, 65536, 65536, 1048576, 1048576, 4194304, 4194304, 1073741824, 1073741824, 4294967296, 4294967296, 68719476736, 68719476736, 274877906944, 274877906944, 17592186044416, 17592186044416
Offset: 0
Examples
Rationals a(n)/A069955(n): [1, 1/3, 4/45, 4/175, 64/11025, 64/43659, 256/693693, ...]. Rationals N2(n): [2, 2/3, 8/45, 8/175, 128/11025, 128/43659, 512/693693,...].
References
- Richard Courant and David Hilbert, Methoden der mathematischen Physik, Bd. I, 3, Auflage, Springer, 1993, pp. 73-74.
Links
- Wolfdieter Lang, Norm square, rationals and more.
Crossrefs
Programs
-
Julia
bitcount(n) = sum(digits(n, base=2)) a(n) = 4^(n - bitcount(n)) # Peter Luschny, Oct 01 2019
-
Mathematica
a[n_] := 4^(n - DigitCount[n, 2, 1]); Array[a, 25, 0] (* Amiram Eldar, Jul 25 2023 *)
-
PARI
a(n) = numerator((1/(2*n+1))*((2^n)/binomial(2*n,n))^2); \\ Michel Marcus, Aug 11 2019
Formula
Extensions
New name by Peter Luschny, Oct 01 2019
Comments