cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124399 a(n) = 4^(n - bitcount(n)) where bitcount(n) = A000120(n).

Original entry on oeis.org

1, 1, 4, 4, 64, 64, 256, 256, 16384, 16384, 65536, 65536, 1048576, 1048576, 4194304, 4194304, 1073741824, 1073741824, 4294967296, 4294967296, 68719476736, 68719476736, 274877906944, 274877906944, 17592186044416, 17592186044416
Offset: 0

Views

Author

Wolfdieter Lang, Nov 10 2006

Keywords

Comments

Numerators of one half of norm square of monic Legendre polynomials p_n(x).
The denominators of these polynomials are given by A069955.
The rationals N2(n) = 2*a(n)/A069955(n) give the minimal norm square for real monic polynomials. The norm square is defined as integral over the interval [-1,+1] of the square of the polynomials. Cf. the Courant-Hilbert reference.

Examples

			Rationals a(n)/A069955(n): [1, 1/3, 4/45, 4/175, 64/11025, 64/43659, 256/693693, ...].
Rationals N2(n): [2, 2/3, 8/45, 8/175, 128/11025, 128/43659, 512/693693,...].
		

References

  • Richard Courant and David Hilbert, Methoden der mathematischen Physik, Bd. I, 3, Auflage, Springer, 1993, pp. 73-74.

Crossrefs

Cf. A000120, A001790, A056982, A060818, A069955 (denominators of N2(n) as defined in the comments).

Programs

  • Julia
    bitcount(n) = sum(digits(n, base=2))
    a(n) = 4^(n - bitcount(n)) # Peter Luschny, Oct 01 2019
  • Mathematica
    a[n_] := 4^(n - DigitCount[n, 2, 1]); Array[a, 25, 0] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    a(n) = numerator((1/(2*n+1))*((2^n)/binomial(2*n,n))^2); \\ Michel Marcus, Aug 11 2019
    

Formula

a(n) = numerator(N2(n)/2) with N2(n)/2:=(1/(2*n+1))*((2^n)/binomial(2*n,n))^2.
N2(n)/2 = (1/(2*n+1))*(1/L(n))^2 with L(n)= A001790(n)/A060818(n), the leading coefficient of the Legendre polynomial P_n(x), in lowest terms.
Bisection: a(2*n)=a(2*n+1) = A056982(n), n>=0.

Extensions

New name by Peter Luschny, Oct 01 2019