A124421 Number of partitions of the set {1,2,...,n} having no blocks that contain only odd entries.
1, 0, 1, 1, 5, 9, 52, 130, 855, 2707, 19921, 75771, 614866, 2717570, 24040451, 120652827, 1152972925, 6460552857, 66200911138, 408845736040, 4465023867757, 30083964854141, 348383154017581, 2539795748336375, 31052765897026352, 243282175672281360
Offset: 0
Keywords
Examples
a(4) = 5 because we have 1234, 134|2, 14|23, 12|34 and 123|4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Crossrefs
Programs
-
Maple
Q[0]:=1: for n from 1 to 27 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 27 do Q[n]:=Q[n] od: seq(subs({t=0,s=1,x=1},Q[n]),n=0..27); # second Maple program: a:= n-> add(Stirling2(floor(n/2), j)*j^ceil(n/2), j=0..floor(n/2)): seq(a(n), n=0..30); # Alois P. Heinz, Oct 23 2013
-
Mathematica
a[0] = 1; a[n_] := Sum[StirlingS2[Floor[n/2], j]*j^Ceiling[n/2], {j, 0, Floor[n/2]}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)
Formula
a(n) = Q[n](0,1,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
a(n) = Sum_{j=0..floor(n/2)} Stirling2(floor(n/2),j) * j^ceiling(n/2). - Alois P. Heinz, Oct 23 2013
Comments