A124423 Number of partitions of the set {1,2,...,n} having no blocks that contain only even entries.
1, 1, 1, 3, 5, 22, 52, 283, 855, 5451, 19921, 144074, 614866, 4941987, 24040451, 211648665, 1152972925, 10998989896, 66200911138, 678600959525, 4465023867757, 48850849177703, 348383154017581, 4045835816532096, 31052765897026352, 381022649523561501
Offset: 0
Keywords
Examples
a(4) = 5 because we have 1234, 14|23, 1|234, 124|3 and 12|34.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Programs
-
Maple
Q[0]:=1: for n from 1 to 27 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 27 do Q[n]:=Q[n] od: seq(subs({t=1,s=0,x=1},Q[n]),n=0..27); # second Maple program: a:= n-> add(Stirling2(ceil(n/2), j)*j^floor(n/2), j=0..ceil(n/2)): seq(a(n), n=0..30); # Alois P. Heinz, Oct 23 2013
-
Mathematica
a[0] = a[1] = 1; a[n_] := Sum[StirlingS2[Ceiling[n/2], j]*j^Floor[n/2], {j, 0, Ceiling[n/2]}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
Formula
a(n) = Q[n](1,0,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
a(n) = Sum_{j=0..ceiling(n/2)} Stirling2(ceiling(n/2),j) * j^floor(n/2). - Alois P. Heinz, Oct 23 2013
Comments