cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A124460 Rectangular table, read by antidiagonals, such that the o.g.f. of row n, R_n(y), satisfies: R_n(y) = Sum_{k>=0} y^k * R_k(y)^n for n>=0, with R_0(y) = 1/(1-y).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 8, 9, 1, 1, 5, 13, 23, 23, 1, 1, 6, 19, 44, 73, 66, 1, 1, 7, 26, 73, 162, 251, 210, 1, 1, 8, 34, 111, 302, 637, 919, 731, 1, 1, 9, 43, 159, 506, 1325, 2622, 3549, 2744, 1, 1, 10, 53, 218, 788, 2437, 6032, 11188, 14371, 10959, 1, 1, 11, 64, 289
Offset: 0

Views

Author

Paul D. Hanna, Nov 03 2006

Keywords

Comments

Antidiagonal sums forms row 1.

Examples

			Row o.g.f.s R_n(y) satisfy:
R_n(y) = R_0(y)^n + y*R_1(y)^n + y^2*R_2(y)^n + y^3*R_3(y)^n +...
more explicitly:
R_0 = 1 + y + y^2 + y^3 + y^4 + ...
R_1 = (R_0) + y*(R_1) + y^2*(R_2) + y^3*(R_3) + y^4*(R_4) + ...
R_2 = (R_0)^2 + y*(R_1)^2 + y^2*(R_2)^2 + y^3*(R_3)^2 + y^4*(R_4)^2 +...
R_3 = (R_0)^3 + y*(R_1)^3 + y^2*(R_2)^3 + y^3*(R_3)^3 + y^4*(R_4)^3 +...
R_4 = (R_0)^4 + y*(R_1)^4 + y^2*(R_2)^4 + y^3*(R_3)^4 + y^4*(R_4)^4 +...
etc., for all rows.
Rectangular table begins:
1,1,1,1,1,1,1,1,1,1,1,1,...
1,2,4,9,23,66,210,731,2744,10959,46058,202028,...
1,3,8,23,73,251,919,3549,14371,60720,266481,1209807,...
1,4,13,44,162,637,2622,11188,49293,223768,1044661,5006126,...
1,5,19,73,302,1325,6032,28193,134825,659011,3290110,16764206,...
1,6,26,111,506,2437,12118,61499,317485,1666371,8891543,48221602,...
1,7,34,159,788,4117,22143,121079,670811,3764758,21408813,123367344,...
1,8,43,218,1163,6532,37703,220663,1304831,7795435,47075775,287431878,...
1,9,53,289,1647,9873,60767,378529,2377322,15055045,96196848,620412879,..
1,10,64,373,2257,14356,93718,618367,4106995,27462836,185031258,...
1,11,76,471,3011,20223,139395,970217,6788744,47766886,338270681,...
1,12,89,584,3928,27743,201136,1471482,10811098,79794397,592228264,...
		

Crossrefs

Rows: A124461, A124462, A124463, A124464, A124465, A124466; diagonals: A124467, A124468; related table: A124469.

Programs

  • PARI
    {T(n,k)=local(m=max(n,k),R=vector(m+1,r,vector(m+1,c,binomial(r+c-2,c-1)))); for(i=0,m,for(r=0,m,R[r+1]=Vec(sum(c=0,m,x^c*Ser(R[c+1])^r+O(x^(m+1))))));R[n+1][k+1]}

Formula

O.g.f.: A(x,y) = Sum_{n>=0} x^n*R_n(y) = Sum_{k>=0} y^k/(1 - x*R_k(y)) ; E.g.f.: A(x,y) = Sum_{n>=0} x^n*R_n(y)/n! = Sum_{k>=0} y^k*exp(x*R_k(y)) where R_n(y) is the o.g.f. of row n.

A124461 Row 1 of rectangular table A124460; also equals the antidiagonal sums of table A124460.

Original entry on oeis.org

1, 2, 4, 9, 23, 66, 210, 731, 2744, 10959, 46058, 202028, 919386, 4321837, 20916763, 103958935, 529512396, 2759340117, 14690668955, 79813438230, 442057104246, 2493917931493, 14320972817368, 83652035642564, 496769855224824
Offset: 0

Views

Author

Paul D. Hanna, Nov 03 2006

Keywords

Comments

In table A124460, the o.g.f. of row n, R_n(y), satisfies: R_n(y) = Sum_{k>=0} y^k * R_k(y)^n for n>=0.

Crossrefs

Cf. A124460 (table); other rows: A124462, A124463, A124464, A124465, A124466.

Programs

  • PARI
    {a(n)=local(m=max(n,1),R=vector(m+1,r,vector(m+1,c,binomial(r+c-2,c-1)))); for(i=0,m,for(r=0,m,R[r+1]=Vec(sum(c=0,m,x^c*Ser(R[c+1])^r+O(x^(m+1))))));R[2][n+1]}

Formula

O.g.f.: A(x) = Sum_{n>=0} x^n*R_n(x) = Sum_{k>=0} x^k/(1 - x*R_k(x)), where R_n(x) is the o.g.f. of row n in table A124460.

A124462 Row 2 of rectangular table A124460.

Original entry on oeis.org

1, 3, 8, 23, 73, 251, 919, 3549, 14371, 60720, 266481, 1209807, 5662008, 27238884, 134391046, 678739990, 3503708942, 18462855900, 99211177417, 543161148837, 3027439667989, 17167987227428, 98995692542858, 580166879766649
Offset: 0

Views

Author

Paul D. Hanna, Nov 03 2006

Keywords

Crossrefs

Cf. A124460 (table); other rows: A124461, A124463, A124464, A124465, A124466.

Programs

  • PARI
    {a(n)=local(m=max(n,2),R=vector(m+1,r,vector(m+1,c,binomial(r+c-2,c-1)))); for(i=0,m,for(r=0,m,R[r+1]=Vec(sum(c=0,m,x^c*Ser(R[c+1])^r+O(x^(m+1))))));R[3][n+1]}

Formula

G.f.: A(x) = Sum_{n>=0} x^n*R_n(x)^2, where R_n(x) is the g.f. of row n in table A124460 and satisfies: R_n(x) = Sum_{k>=0} x^k * R_k(x)^n for n>=0.

A124463 Row 3 of rectangular table A124460.

Original entry on oeis.org

1, 4, 13, 44, 162, 637, 2622, 11188, 49293, 223768, 1044661, 5006126, 24580704, 123464593, 633467893, 3315948760, 17690431736, 96101620364, 531196784996, 2985589206506, 17053375055317, 98942675518256, 582858713958087
Offset: 0

Views

Author

Paul D. Hanna, Nov 03 2006

Keywords

Crossrefs

Cf. A124460 (table); other rows: A124461, A124462, A124464, A124465, A124466.

Programs

  • PARI
    {a(n)=local(m=max(n,3),R=vector(m+1,r,vector(m+1,c,binomial(r+c-2,c-1)))); for(i=0,m,for(r=0,m,R[r+1]=Vec(sum(c=0,m,x^c*Ser(R[c+1])^r+O(x^(m+1))))));R[4][n+1]}

Formula

G.f.: A(x) = Sum_{n>=0} x^n*R_n(x)^3, where R_n(x) is the g.f. of row n in table A124460 and satisfies: R_n(x) = Sum_{k>=0} x^k * R_k(x)^n for n>=0.

A124464 Row 4 of rectangular table A124460.

Original entry on oeis.org

1, 5, 19, 73, 302, 1325, 6032, 28193, 134825, 659011, 3290110, 16764206, 87103106, 461090076, 2484768459, 13621130998, 75906831145, 429768775851, 2470872560536, 14418770507660, 85367306874021, 512604419523512
Offset: 0

Views

Author

Paul D. Hanna, Nov 03 2006

Keywords

Crossrefs

Cf. A124460 (table); other rows: A124461, A124462, A124463, A124465, A124466.

Programs

  • PARI
    {a(n)=local(m=max(n,4),R=vector(m+1,r,vector(m+1,c,binomial(r+c-2,c-1)))); for(i=0,m,for(r=0,m,R[r+1]=Vec(sum(c=0,m,x^c*Ser(R[c+1])^r+O(x^(m+1))))));R[5][n+1]}

Formula

G.f.: A(x) = Sum_{n>=0} x^n*R_n(x)^4, where R_n(x) is the g.f. of row n in table A124460 and satisfies: R_n(x) = Sum_{k>=0} x^k * R_k(x)^n for n>=0.

A124466 Row 6 of rectangular table A124460.

Original entry on oeis.org

1, 7, 34, 159, 788, 4117, 22143, 121079, 670811, 3764758, 21408813, 123367344, 720303998, 4260491461, 25523584313, 154835572102, 950950450917, 5911757419002, 37193168793829, 236764641742504, 1524754216743136
Offset: 0

Views

Author

Paul D. Hanna, Nov 03 2006

Keywords

Crossrefs

Cf. A124460 (table); other rows: A124461, A124462, A124463, A124464, A124465.

Programs

  • PARI
    {a(n)=local(m=max(n,6),R=vector(m+1,r,vector(m+1,c,binomial(r+c-2,c-1)))); for(i=0,m,for(r=0,m,R[r+1]=Vec(sum(c=0,m,x^c*Ser(R[c+1])^r+O(x^(m+1))))));R[7][n+1]}

Formula

G.f.: A(x) = Sum_{n>=0} x^n*R_n(x)^6, where R_n(x) is the g.f. of row n in table A124460 and satisfies: R_n(x) = Sum_{k>=0} x^k * R_k(x)^n for n>=0.

A124467 Main diagonal of rectangular table A124460.

Original entry on oeis.org

1, 2, 8, 44, 302, 2437, 22143, 220663, 2377322, 27462836, 338270681, 4422338285, 61114545578, 889542935517, 13593252066134, 217461100417945, 3632859088845390, 63233532604594586, 1144455373221119025
Offset: 0

Views

Author

Paul D. Hanna, Nov 03 2006

Keywords

Comments

In table A124460, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = Sum_{k>=0} y^k * R_k(y)^n for n>=0.

Crossrefs

Cf. A124460 (table); rows: A124461, A124462, A124463, A124464, A124465, A124466; A124468 (diagonal).

Programs

  • PARI
    {a(n)=local(R=vector(n+1,r,vector(n+1,c,binomial(r+c-2,c-1)))); for(i=0,n,for(r=0,n,R[r+1]=Vec(sum(c=0,n,x^c*Ser(R[c+1])^r+O(x^(n+1))))));R[n+1][n+1]}

A124468 Secondary diagonal of rectangular table A124460.

Original entry on oeis.org

1, 3, 13, 73, 506, 4117, 37703, 378529, 4106995, 47766886, 592228264, 7791350900, 108323265571, 1585742194947, 24364012940723, 391780319558565, 6577005078357973, 115010285695135090, 2090723838361780991
Offset: 0

Views

Author

Paul D. Hanna, Nov 03 2006

Keywords

Comments

In table A124460, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = Sum_{k>=0} y^k * R_k(y)^n for n>=0.

Crossrefs

Cf. A124460 (table); rows: A124461, A124462, A124463, A124464, A124465, A124466; A124467 (diagonal).

Programs

  • PARI
    {a(n)=local(R=vector(n+2,r,vector(n+1,c,binomial(r+c-2,c-1)))); for(i=0,n+1,for(r=0,n+1,R[r+1]=Vec(sum(c=0,n,x^c*Ser(R[c+1])^r+O(x^(n+2))))));R[n+2][n+1]}
Showing 1-8 of 8 results.