A124469 Triangle, read by rows, where row n equals the inverse binomial transform of column n in the rectangular table A124460.
1, 1, 1, 1, 3, 1, 1, 8, 6, 1, 1, 22, 28, 11, 1, 1, 65, 120, 81, 20, 1, 1, 209, 500, 494, 219, 37, 1, 1, 730, 2088, 2733, 1812, 578, 70, 1, 1, 2743, 8884, 14411, 12904, 6299, 1518, 135, 1, 1, 10958, 38803, 74484, 84424, 56590, 21384, 4007, 264, 1, 1, 46057, 174366
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 3, 1; 1, 8, 6, 1; 1, 22, 28, 11, 1; 1, 65, 120, 81, 20, 1; 1, 209, 500, 494, 219, 37, 1; 1, 730, 2088, 2733, 1812, 578, 70, 1; 1, 2743, 8884, 14411, 12904, 6299, 1518, 135, 1; 1, 10958, 38803, 74484, 84424, 56590, 21384, 4007, 264, 1; 1, 46057, 174366, 383391, 526121, 453082, 238853, 72076, 10693, 521, 1;
Programs
-
PARI
{T(n,k)=local(R=vector(n+2,r,vector(n+2,c,binomial(r+c-2,c-1)))); for(i=0,n,for(r=0,n,R[r+1]=Vec(sum(c=0,n,x^c*Ser(R[c+1])^r+O(x^(n+1)))))); Vec(subst(Ser(vector(n+1,j,R[j][n+1])),x,x/(1+x))/(1+x))[k+1]}
Formula
Secondary diagonal T(n+1,n) = 2^n + n = A006127(n).
Comments