cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124479 From the game of Quod: number of "squares" on an n X n array of points with the four corner points deleted.

Original entry on oeis.org

0, 1, 11, 37, 88, 175, 311, 511, 792, 1173, 1675, 2321, 3136, 4147, 5383, 6875, 8656, 10761, 13227, 16093, 19400, 23191, 27511, 32407, 37928, 44125, 51051, 58761, 67312, 76763, 87175, 98611, 111136, 124817, 139723, 155925, 173496, 192511, 213047, 235183, 259000
Offset: 2

Views

Author

Joshua Zucker, Dec 18 2006

Keywords

Comments

We count all squares whose vertices are among the points; the sides of the squares need not be horizontal or vertical.

Examples

			So for n=3 we have 5 points:
.....O
....OOO
.....O
The only square is formed by the 4 outer points, agreeing with a(3)=1.
For n=4 we have 12 points:
.....OO
....OOOO
....OOOO
.....OO
There are 5 unit squares, 4 tilted ones with sides sqrt(2) and 2 tilted ones with sides sqrt(5), agreeing with a(4)=11.
		

References

  • Ian Stewart, How To Cut A Cake: and Other Mathematical Conundrums, Chap. 7.

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^3(1+6x-8x^2+3x^3)/(1-x)^5,{x,0,50}],x],2] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,11,37,88},50] (* Harvey P. Dale, Apr 16 2022 *)

Formula

a(n) = (n^4 - n^2 - 48*n + 84)/12.
G.f.: x^3*(1+6*x-8*x^2+3*x^3)/(1-x)^5. [Colin Barker, May 21 2012]

Extensions

Additional comments from Dean Hickerson, Dec 18 2006