A124496 Triangle read by rows: T(n,k) is the number of set partitions of {1,2,...,n} in which the size of the last block is k, 1<=k<=n; the blocks are ordered with increasing least elements.
1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 31, 14, 5, 1, 1, 121, 54, 20, 6, 1, 1, 523, 233, 85, 27, 7, 1, 1, 2469, 1101, 400, 125, 35, 8, 1, 1, 12611, 5625, 2046, 635, 175, 44, 9, 1, 1, 69161, 30846, 11226, 3488, 952, 236, 54, 10, 1, 1, 404663, 180474, 65676, 20425, 5579, 1366, 309, 65, 11, 1, 1
Offset: 1
Examples
T(4,2) = 4 because we have 13|24, 14|23, 12|34 and 1|2|34. Triangle starts: 1; 1,1; 3,1,1; 9,4,1,1; 31,14,5,1,1; 121,54,20,6,1,1; 523,233,85,27,7,1,1; 2469,1101,400,125,35,8,1,1; 12611,5625,2046,635,175,44,9,1,1; 69161,30846,11226,3488,952,236,54,10,1,1; 404663,180474,65676,20425,5579,1366,309,65,11,1,1; 2512769,1120666,407787,126817,34685,8494,1893,395,77,12,1,1; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- H. W. Gould and Jocelyn Quaintance, A linear binomial recurrence and the Bell numbers and polynomials. Applicable Analysis and Discrete Mathematics, 1 (2007), 371-385.
Crossrefs
Programs
-
Maple
Q[1]:=t*s: for n from 2 to 12 do Q[n]:=expand(t*s*subs(t=1,Q[n-1])+s*diff(Q[n-1],s)+t*Q[n-1]-Q[n-1]) od:for n from 1 to 12 do P[n]:=sort(subs(s=1,Q[n])) od: for n from 1 to 12 do seq(coeff(P[n],t,j),j=1..n) od; # second Maple program: T:= proc(n, k) option remember; `if`(n=k, 1, add(T(n-j, k)*binomial(n-1, j-1), j=1..n-k)) end: seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Jul 05 2016
-
Mathematica
T[n_, k_] := T[n, k] = If[n == k, 1, Sum[T[n-j, k]*Binomial[n-1, j-1], {j, 1, n-k}]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten; (* Jean-François Alcover, Jul 21 2016, after Alois P. Heinz *)
Formula
The row enumerating polynomial P[n](t)=Q[n](t,1), where Q[1](t,s)=ts and Q[n](t,s)=s*dQ[n-1](t,s)/ds +(t-1)Q[n-1](t,s)+tsQ[n-1](1,s) for n>=2.
A008275^-1*ONES*A008275 or A008277*ONES*A008277^-1 where ONES is a triangle with all entries = 1. [From Gerald McGarvey, Aug 20 2009]
Comments