cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124496 Triangle read by rows: T(n,k) is the number of set partitions of {1,2,...,n} in which the size of the last block is k, 1<=k<=n; the blocks are ordered with increasing least elements.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 31, 14, 5, 1, 1, 121, 54, 20, 6, 1, 1, 523, 233, 85, 27, 7, 1, 1, 2469, 1101, 400, 125, 35, 8, 1, 1, 12611, 5625, 2046, 635, 175, 44, 9, 1, 1, 69161, 30846, 11226, 3488, 952, 236, 54, 10, 1, 1, 404663, 180474, 65676, 20425, 5579, 1366, 309, 65, 11, 1, 1
Offset: 1

Views

Author

Emeric Deutsch, Nov 14 2006

Keywords

Comments

Number of restricted growth functions of length n with a multiplicity k of the maximum value. RGF's are here defined as f(1)=1, f(i) <= 1+max_{1<=jR. J. Mathar, Mar 18 2016
This is table 9.2 in the Gould-Quaintance reference. - Peter Luschny, Apr 25 2016

Examples

			T(4,2) = 4 because we have 13|24, 14|23, 12|34 and 1|2|34.
Triangle starts:
  1;
  1,1;
  3,1,1;
  9,4,1,1;
  31,14,5,1,1;
  121,54,20,6,1,1;
  523,233,85,27,7,1,1;
  2469,1101,400,125,35,8,1,1;
  12611,5625,2046,635,175,44,9,1,1;
  69161,30846,11226,3488,952,236,54,10,1,1;
  404663,180474,65676,20425,5579,1366,309,65,11,1,1;
  2512769,1120666,407787,126817,34685,8494,1893,395,77,12,1,1;
  ...
		

Crossrefs

Row sums are the Bell numbers (A000110). It seems that T(n, 1), T(n, 2), T(n, 3) and T(n, 4) are given by A040027, A045501, A045499 and A045500, respectively. A121207 gives a very similar triangle.
T(2n,n) gives A297924.

Programs

  • Maple
    Q[1]:=t*s: for n from 2 to 12 do Q[n]:=expand(t*s*subs(t=1,Q[n-1])+s*diff(Q[n-1],s)+t*Q[n-1]-Q[n-1]) od:for n from 1 to 12 do P[n]:=sort(subs(s=1,Q[n])) od: for n from 1 to 12 do seq(coeff(P[n],t,j),j=1..n) od;
    # second Maple program:
    T:= proc(n, k) option remember; `if`(n=k, 1,
          add(T(n-j, k)*binomial(n-1, j-1), j=1..n-k))
        end:
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Jul 05 2016
  • Mathematica
    T[n_, k_] := T[n, k] = If[n == k, 1, Sum[T[n-j, k]*Binomial[n-1, j-1], {j, 1, n-k}]];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten; (* Jean-François Alcover, Jul 21 2016, after Alois P. Heinz *)

Formula

The row enumerating polynomial P[n](t)=Q[n](t,1), where Q[1](t,s)=ts and Q[n](t,s)=s*dQ[n-1](t,s)/ds +(t-1)Q[n-1](t,s)+tsQ[n-1](1,s) for n>=2.
A008275^-1*ONES*A008275 or A008277*ONES*A008277^-1 where ONES is a triangle with all entries = 1. [From Gerald McGarvey, Aug 20 2009]
Conjectures: T(n,n-3) = A000096(n). T(n,n-4)= A055831(n+1). - R. J. Mathar, Mar 13 2016