A124539 Triangle, read by rows, where row n equals the inverse binomial transform of column n in the rectangular table A124530.
1, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 15, 8, 1, 0, 1, 61, 51, 14, 1, 0, 1, 273, 311, 138, 24, 1, 0, 1, 1331, 1901, 1191, 349, 42, 1, 0, 1, 6977, 11838, 9693, 4100, 868, 76, 1, 0, 1, 38872, 75556, 76950, 43257, 13459, 2163, 142, 1, 0, 1, 228089, 495146, 606275, 430517
Offset: 0
Examples
Triangle begins: 1; 1, 0; 1, 1, 0; 1, 4, 1, 0; 1, 15, 8, 1, 0; 1, 61, 51, 14, 1, 0; 1, 273, 311, 138, 24, 1, 0; 1, 1331, 1901, 1191, 349, 42, 1, 0; 1, 6977, 11838, 9693, 4100, 868, 76, 1, 0; 1, 38872, 75556, 76950, 43257, 13459, 2163, 142, 1, 0; 1, 228089, 495146, 606275, 430517, 180000, 43274, 5442, 272, 1, 0; ...
Crossrefs
Cf. A124530 (table).
Programs
-
PARI
T(n,k)=local(m=max(n,k),R);R=vector(m+1,r,vector(m+1,c,if(r==1 || c<=2,1,r^(c-2)))); for(i=0,m, for(r=0,m, R[r+1]=Vec(sum(c=0,m, x^c*Ser(R[c+1])^(r*c)+O(x^(m+1)))))); Vec(subst(Ser(vector(n+1, j, R[j][n+1])), x, x/(1+x))/(1+x))[k+1]
Formula
Secondary diagonal T(n+1,n) = 2^n + 2n.
Comments