cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124550 Rectangular table, read by antidiagonals, such that the g.f. of row n, R_n(y), satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0, with R_0(y)=1.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 30, 16, 0, 1, 5, 26, 91, 159, 66, 0, 1, 6, 40, 204, 666, 1056, 348, 0, 1, 7, 57, 385, 1899, 5955, 8812, 2321, 0, 1, 8, 77, 650, 4345, 21180, 65794, 92062, 19437, 0, 1, 9, 100, 1015, 8616, 57876, 287568, 901881
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

Antidiagonal sums equal row 1 (A124551).

Examples

			The g.f. of row n, R_n(y), simultaneously satisfies:
R_n(y) = [1 + y*R_{n}(y) + y^2*R_{2n}(y) + y^3*R_{3n}(y) +...]^n
more explicitly,
R_0 = [1 + y + y^2 + y^3 +... ]^0 = 1,
R_1 = [1 + y*R_1 + y^2*R_2 + y^3*R_3 + y^4*R_4 +...]^1,
R_2 = [1 + y*R_2 + y^2*R_4 + y^3*R_6 + y^4*R_8 +...]^2,
R_3 = [1 + y*R_3 + y^2*R_6 + y^3*R_9 + y^4*R_12 +...]^3,
R_4 = [1 + y*R_4 + y^2*R_8 + y^3*R_12 + y^4*R_16 +...]^4,
etc., for all rows.
Table begins:
1,0,0,0,0,0,0,0,0,0,...
1,1,2,5,16,66,348,2321,19437,203554,2661035,43399794,883165898,...
1,2,7,30,159,1056,8812,92062,1200415,19512990,395379699,9991017068,...
1,3,15,91,666,5955,65794,901881,15346419,324465907,8535776700,...
1,4,26,204,1899,21180,287568,4802716,99084889,2531896840,...
1,5,40,385,4345,57876,926340,18088835,434349525,12879458545,...
1,6,57,650,8616,133212,2447115,54419202,1481595429,49675372516,...
1,7,77,1015,15449,271677,5621371,139777303,4236941723,157754261392,...
1,8,100,1496,25706,506376,11637540,319211576,10629219251,...
1,9,126,2109,40374,880326,22228296,665618589,24097683942,...
1,10,155,2870,60565,1447752,39814650,1290831110,50395939380,...
1,11,187,3795,87516,2275383,67666852,2359273213,98672395096,...
1,12,222,4900,122589,3443748,110082100,4104444564,182882370066,...
1,13,260,6201,167271,5048472,172579056,6848496031,323591733868,...
1,14,301,7714,223174,7201572,262109169,11025158762,550236760920,...
1,15,345,9455,292035,10032753,387284805,17206288875,903909656190,...
1,16,392,11440,375716,13690704,558624184,26132289904,1440743993738,...
1,17,442,13685,476204,18344394,788813124,38746675145,2235979092419,...
1,18,495,16206,595611,24184368,1092983592,56235032046,3388787136045,...
1,19,551,19019,736174,31424043,1489009062,80068650785,5027951628273,...
1,20,610,22140,900255,40301004,1997816680,112053079180,7318490555455,...
1,21,672,25585,1090341,51078300,2643716236,154381866075,10469322413655,..
1,22,737,29370,1309044,64045740,3454745943,209695755346,14742078039007,..
1,23,805,33511,1559101,79521189,4463035023,281147592671,20461165963557,..
1,24,876,38024,1843374,97851864,5705183100,372473207208,28025203801701,..
		

Crossrefs

Programs

  • PARI
    {T(n,k)=if(k==0,1,if(n==0,0,if(k==1,n,if(n<=k, Vec(( 1+x*Ser( vector(k,j,sum(i=0,j-1,T(n+i*n,j-1-i)) ) ))^n)[k+1], Vec(subst(Ser(concat(concat(0, Vec(subst(Ser(vector(k+1,j,T(j-1,k))),x,x/(1+x))/(1+x))),vector(n-k+1)) ),x,x/(1-x))/(1-x +x*O(x^(n))))[n]))))}

Formula

Let G_n(y) be the g.f. of row n in table A124560, then R_n(y) = G_n(y)^n and thus G_n(y) = Sum_{k>=0} y^k * R_{n*k}(y) for n>=0, where R_n(y) is the g.f. of row n in this table.