A124575 Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (2,4,4,...) and super- and subdiagonals (1,1,1,...).
1, 2, 1, 5, 6, 1, 16, 30, 10, 1, 62, 146, 71, 14, 1, 270, 717, 444, 128, 18, 1, 1257, 3582, 2621, 974, 201, 22, 1, 6096, 18206, 15040, 6718, 1800, 290, 26, 1, 30398, 93960, 85084, 43712, 14208, 2986, 395, 30, 1, 154756, 491322, 478008, 274140, 103530
Offset: 0
Examples
Row 2 is (5,6,1) because M[3]= [2,1,0;1,4,1;0,1,4] and M[3]^2=[5,6,1;6,18,8;1,8,17]. Triangle starts: 1; 2, 1; 5, 6, 1; 16, 30, 10, 1; 62, 146, 71, 14, 1; 270, 717, 444, 128, 18, 1;
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
Programs
-
Maple
with(linalg): m:=proc(i,j) if i=1 and j=1 then 2 elif i=j then 4 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 2,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
-
Mathematica
M[n_] := SparseArray[{{1, 1} -> 2, Band[{2, 2}] -> 4, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {n, n}]; row[1] = {1}; row[n_] := MatrixPower[M[n], n-1] // First // Normal; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
Formula
T(n,k) = T(n-1,k-1) + 4*T(n-1,k) + T(n-1,k-1) for k >= 2.
Sum_{k=0..n} T(n,k)*(3*k+1) = 6^n. - Philippe Deléham, Mar 27 2007
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A033543(m+n). - Philippe Deléham, Nov 22 2009
Extensions
Edited by N. J. A. Sloane, Dec 04 2006
Comments