cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124576 Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (1,4,4,...) and super- and subdiagonals (1,1,1,...).

Original entry on oeis.org

1, 1, 1, 2, 5, 1, 7, 23, 9, 1, 30, 108, 60, 13, 1, 138, 522, 361, 113, 17, 1, 660, 2587, 2079, 830, 182, 21, 1, 3247, 13087, 11733, 5581, 1579, 267, 25, 1, 16334, 67328, 65600, 35636, 12164, 2672, 368, 29, 1, 83662, 351246, 365364, 220308, 86964, 23220, 4173
Offset: 1

Views

Author

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows given by : T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+4*T(n-1,k)+T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007

Examples

			Row 3 is (2,5,1) because M[3]=[1,1,0;1,4,1;0,1,4] and M[3]^2=[2,5,1;5,18,8;1,8,17].
Triangle starts:
1;
1, 1;
2, 5, 1;
7, 23, 9, 1;
30, 108, 60, 13, 1;
138, 522, 361, 113, 17, 1;
		

Crossrefs

Cf. A124575, A124574, A052179, A227081 (row sums).

Programs

  • Maple
    with(linalg): m:=proc(i,j) if i=1 and j=1 then 1 elif i=j then 4 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 1,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
    # alternative
    A124576_row := proc(n)
        if n = 0 then
            return [1] ;
        else
            M := Matrix(n,n) ;
            M[1,1] := 1;
            for c from 2 to n do
                if c = 2 then
                    M[1,c] := 1;
                else
                    M[1,c] := 0;
                end if;
            end do:
            for r from 2 to n do
                for c from 1 to n do
                    if r = c then
                        M[r,c] := 4;
                    elif abs(r-c) = 1 then
                        M[r,c] := 1;
                    else
                        M[r,c] := 0;
                    end if;
                end do:
            end do:
            LinearAlgebra[MatrixPower](M,n-1) ;
            return [seq(%[1,r],r=1..n)] ;
        end if;
    end proc:
    for n from 0 to 10 do
        A124576_row(n) ;
        print(%) ;
    end do: # R. J. Mathar, May 20 2025
  • Mathematica
    M[n_] := SparseArray[{{1, 1} -> 1, Band[{2, 2}] -> 4, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {n, n}]; row[1] = {1}; row[n_] := MatrixPower[M[n], n-1] // First // Normal; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)

Formula

Sum_{k=0..n} T(n,k)*(4*k+1) = 6^n. - Philippe Deléham, Mar 27 2007

Extensions

Edited by N. J. A. Sloane, Dec 04 2006