cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124581 Abundant cubes.

Original entry on oeis.org

216, 1000, 1728, 2744, 5832, 8000, 10648, 13824, 17576, 21952, 27000, 46656, 64000, 74088, 85184, 110592, 125000, 140608, 157464, 175616, 216000, 287496, 314432, 343000, 373248, 438976, 474552, 512000, 592704, 681472, 729000, 778688, 884736
Offset: 1

Views

Author

Tanya Khovanova, Dec 27 2006

Keywords

Comments

Abundant cubes can't be prime powers for obvious reasons. Hence all these numbers can be represented as a^3*b^3 for some coprime a and b. a^3*b^3 is the magic product of the following magic 3 X 3 multiplicative square: [a*b^2, 1, a^2*b; a^2, ab, b^2; b, a^2*b^2; a].

Examples

			216 is in the sequence because 216=6^3 and the sum of the proper divisors of 216 is 108+72+54+...+3+2+1 > 216.
		

Crossrefs

Intersection of A000578 and A005101.
Cf. A111029 = magic products of 3 X 3 multiplicative magic squares.

Programs

  • Maple
    isA005101 := proc(n) if numtheory[sigma](n) > 2*n then RETURN(true) ; else RETURN(false) ; fi ; end : for n from 1 to 120 do if isA005101(n^3) then printf("%d,",n^3) ; fi ; od ; # R. J. Mathar, Jan 07 2007
    with(numtheory): a:=proc(n) if sigma(n^3)>2*n^3 then n^3 else fi end: seq(a(n),n=1..110); # Emeric Deutsch, Jan 10 2007
  • Mathematica
    Select[Range[100]^3, DivisorSigma[1, #] > 2# &] (* Amiram Eldar, Aug 14 2019 *)

Extensions

More terms from R. J. Mathar and Emeric Deutsch, Jan 07 2007