cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124593 Number of 4-indecomposable trees with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 11, 13, 17, 23, 27, 33, 42, 48, 57, 69, 78, 90, 106, 118, 134, 154, 170, 190, 215, 235, 260, 290, 315, 345, 381, 411, 447, 489, 525, 567, 616, 658, 707, 763, 812, 868, 932, 988, 1052, 1124, 1188, 1260, 1341, 1413, 1494, 1584, 1665, 1755, 1855, 1945
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Feb 14 2007, extended with generating function Feb 25 2007

Keywords

Comments

A connected graph is called k-decomposable if it is possible to remove some edges and leave a graph with at least two connected components in which every component has at least k nodes.
Every connected graph with < 2k nodes is automatically k-indecomposable.
Necessary conditions are that a 4-indecomposable tree may not contain a path with >= 8 nodes, nor two node-disjoint paths with >= 4 nodes each.
From Brendan McKay, Feb 15 2007: (Start)
A necessary and sufficient condition seems to be that there are no two node-disjoint subtrees each of which is P_4 or K_{1,3}.
Alternatively, a tree with n vertices is k-decomposable iff, for each edge, removing that edge leaves a component with at most k-1 vertices. Finding the maximal k such that a tree is k-decomposable is easy to do in linear time. (End)
The counts of 1-indecomposable (1,0,0,0,...), 2-indecomposable (1,1,1,1,1,1,...) or 3-indecomposable (1,1,1,2,3,3,4,4,5,5,6,6,7,7,...) trees with number of nodes = 1,2,3,4,... are all trivial.

Examples

			Rather than show some 4-indecomposable trees, instead we show all four 3-indecomposable trees with 7 nodes:
O-O-O-O-O....O..........O.O...O...O
....|........|..........|/.....\./.
....O....O-O-O-O-O..O-O-O-O...O-O-O
....|........|..........|....../.\.
....O........O..........O.....O...O
On the other hand, O-O-O-O-O-O-O is 3-decomposable, because removing the third edge gives O-O-O O-O-O-O, with 2 connected components each with >= 3 nodes.
		

Crossrefs

Programs

  • PARI
    Vec((1 -x^2 -2*x^3 +x^4 +3*x^5 +3*x^6 +2*x^7 -4*x^8 -5*x^9 -3*x^10 +3*x^11 +4*x^12 +x^13 -x^14 -x^15) / ((1 -x)^4*(1 +x)*(1 +x +x^2)^2) + O(x^50)) \\ Colin Barker, May 27 2016

Formula

G.f.: f(x) / ((1-x)*(1-x^2)*(1-x^3)^2) where f(x) = 1 - x^2 - 2*x^3 + x^4 + 3*x^5 + 3*x^6 + 2*x^7 - 4*x^8 - 5*x^9 - 3*x^10 + 3*x^11 + 4*x^12 + x^13 - x^14 - x^15.