A124666 Numbers ending in 1, 3, 7 or 9 such that either prepending or following them by one digit doesn't produce a prime.
891, 921, 1029, 1037, 1653, 1763, 1857, 2427, 2513, 2519, 2607, 3111, 3193, 3213, 3501, 3519, 3707, 3953, 4227, 4459, 4599, 4689, 4803, 4863, 5019, 5043, 5047, 5397, 5459, 5489, 5499, 6019, 6023, 6429, 6483, 6609, 6621, 7113
Offset: 1
Examples
The definition means that 891, 1891, 2891, 3891, 4891, 5891, 6891, 7891, 8891, 9891, 8911, 8913, 8917 and 8919 are all composite numbers.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..4000
Crossrefs
Cf. A124665.
Programs
-
Mathematica
dppQ[n_]:=AllTrue[Join[{n},Table[m*10^IntegerLength[n]+n,{m,9}],Table[ n*10+k,{k,{1,3,7,9}}]],CompositeQ]; Select[Range[8000],MemberQ[ {1,3,7,9},Mod[ #,10]]&&dppQ[#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 19 2018 *)
-
Python
from sympy import isprime def ok(n): s = str(n) if s[-1] not in "1379": return False if any(isprime(int(s+c)) for c in "1379"): return False return not any(isprime(int(c+s)) for c in "0123456789") print([k for k in range(7114) if ok(k)]) # Michael S. Branicky, Aug 02 2022
Comments