cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124671 Row sums of A126277 = binomial transform of (1, 2, 2, 3, 4, 4, 4, ...)

Original entry on oeis.org

1, 3, 7, 16, 37, 85, 191, 418, 893, 1871, 3863, 7892, 16005, 32297, 64959, 130374, 261309, 523299, 1047415, 2095800, 4192741, 8386813, 16775167, 33552106, 67106237, 134214775, 268432151, 536867228, 1073737733, 2147479121, 4294962303, 8589929102, 17179863165
Offset: 1

Views

Author

Gary W. Adamson, Dec 23 2006

Keywords

Examples

			a(4) = 16 = sums of 4th row terms of A126277: (1 + 4 + 7 + 4).
a(4) = 16 = 1*1 + 3*2 + 3*2 + 1*3.
		

Crossrefs

Cf. A126277.

Programs

  • Magma
    I:=[1,3,7,16,37]; [n le 5 select I[n] else 6*Self(n-1)-14*Self(n-2)+16*Self(n-3)-9*Self(n-4)+2*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Mar 15 2014
  • Mathematica
    CoefficientList[Series[(1 - 3 x + 3 x^2)/((1 - 2 x) (x - 1)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 15 2014 *)
  • PARI
    Vec(x*(1-3*x+3*x^2)/((1-2*x)*(x-1)^4) + O(x^100)) \\ Colin Barker, Mar 13 2014
    

Formula

G.f.: x*(1-3*x+3*x^2)/((1-2*x)*(x-1)^4). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 14 2009; corrected by R. J. Mathar, Sep 16 2009
a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 9*a(n-4) + 2*a(n-5) for n > 4. - Vincenzo Librandi, Mar 15 2014
a(n) = -2 + 2^(1+n) - (5*n)/6 - n^3/6. - Colin Barker, Jul 21 2017

Extensions

More terms from Colin Barker, Mar 13 2014