A124671 Row sums of A126277 = binomial transform of (1, 2, 2, 3, 4, 4, 4, ...)
1, 3, 7, 16, 37, 85, 191, 418, 893, 1871, 3863, 7892, 16005, 32297, 64959, 130374, 261309, 523299, 1047415, 2095800, 4192741, 8386813, 16775167, 33552106, 67106237, 134214775, 268432151, 536867228, 1073737733, 2147479121, 4294962303, 8589929102, 17179863165
Offset: 1
Examples
a(4) = 16 = sums of 4th row terms of A126277: (1 + 4 + 7 + 4). a(4) = 16 = 1*1 + 3*2 + 3*2 + 1*3.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-14,16,-9,2).
Crossrefs
Cf. A126277.
Programs
-
Magma
I:=[1,3,7,16,37]; [n le 5 select I[n] else 6*Self(n-1)-14*Self(n-2)+16*Self(n-3)-9*Self(n-4)+2*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Mar 15 2014
-
Mathematica
CoefficientList[Series[(1 - 3 x + 3 x^2)/((1 - 2 x) (x - 1)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 15 2014 *)
-
PARI
Vec(x*(1-3*x+3*x^2)/((1-2*x)*(x-1)^4) + O(x^100)) \\ Colin Barker, Mar 13 2014
Formula
G.f.: x*(1-3*x+3*x^2)/((1-2*x)*(x-1)^4). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 14 2009; corrected by R. J. Mathar, Sep 16 2009
a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 9*a(n-4) + 2*a(n-5) for n > 4. - Vincenzo Librandi, Mar 15 2014
a(n) = -2 + 2^(1+n) - (5*n)/6 - n^3/6. - Colin Barker, Jul 21 2017
Extensions
More terms from Colin Barker, Mar 13 2014