A124693 a(1)=1. a(n+1) = sum a(k), where the sum is over all positive integers k, k <= n, where each positive integer <= k and coprime to k is also coprime to n.
1, 1, 2, 4, 6, 14, 16, 44, 64, 82, 88, 322, 338, 982, 1002, 1006, 2456, 6428, 6766, 19622, 19710, 19728, 19874, 98556, 105322, 126042, 126510, 252610, 253612, 1061208, 1061210, 3183626, 4770276, 4770358, 4772814, 4772828, 5939358, 31392886
Offset: 1
Keywords
Examples
The positive integers k, where k <= 6 and where each positive integer <= k and coprime to k is also coprime to 6, are 1,2,6. So a(7) = a(1)+a(2)+a(6) = 1+1+14 = 16.
Crossrefs
Cf. A126260.
Programs
-
Mathematica
f[n_] := Select[ Range[n], GCD[ #, n] == 1 &]; g[n_] := Select[ Range[n], Times @@ GCD[f[ # ], n] == 1 &]; h[l_List] := Append[l, Plus @@ l[[g[Length[l]]]]]; Nest[h, {1}, 38] (* Ray Chandler, Dec 26 2006 *)
Extensions
Extended by Ray Chandler, Dec 26 2006