cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124707 Number of base 14 circular n-digit numbers with adjacent digits differing by 1 or less.

Original entry on oeis.org

1, 14, 40, 92, 244, 644, 1750, 4802, 13324, 37244, 104770, 296222, 841114, 2396954, 6851920, 19639652, 56426044, 162453884, 468581890, 1353822062, 3917298334, 11350084334, 32926503100, 95626832432, 278010277474, 809008239794, 2356265478100, 6868253600552
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n) = a(base-1,n)+A002426(n+1) for base>=1.int(n/2)+1
a(n) = T(n, 14) where T(n, k) = Sum_{j=1..k} (1+2*cos(j*Pi/(k+1)))^n. These are the number of smooth cyclic words of length n over the alphabet {1,2,..,14}. See theorem 3.3 in Knopfmacher and others, reference in A124696. - Peter Luschny, Aug 13 2012

Crossrefs

Except for the first term, row 14 of A276562.

Formula

G.f.: -(120*x^13 -55*x^12 -1200*x^11 +900*x^10 +2864*x^9 -3087*x^8 -1584*x^7 +3135*x^6 -792*x^5 -627*x^4 +416*x^3 -78*x^2 +1) / ((2*x-1) *(x^2-3*x+1) *(x^2+x-1) *(x^4+3*x^3-x^2-3*x+1) *(5*x^4-5*x^3-5*x^2+5*x-1)). - Alois P. Heinz, Apr 02 2025