cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A124744 Expansion of (1+x*y)/(1-x^2*y^2+x^3*y^2).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 1, -2, 1, 0, 0, 0, 0, 0, 1, -3, 1, 0, 0, 0, 0, 0, 0, 3, -3, 1, 0, 0, 0, 0, 0, 0, -1, 3, -4, 1, 0, 0, 0, 0, 0, 0, 0, -1, 6, -4, 1, 0, 0, 0, 0, 0, 0, 0, 0, -4, 6, -5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -4, 10, -5, 1
Offset: 0

Views

Author

Paul Barry, Nov 06 2006

Keywords

Examples

			Triangle begins
  1,
  0, 1,
  0, 0, 1,
  0, 0, -1, 1,
  0, 0, 0, -1, 1,
  0, 0, 0, 0, -2, 1,
  0, 0, 0, 0, 1, -2, 1,
  0, 0, 0, 0, 0, 1, -3, 1,
  0, 0, 0, 0, 0, 0, 3, -3, 1,
  0, 0, 0, 0, 0, 0, -1, 3, -4, 1,
  0, 0, 0, 0, 0, 0, 0, -1, 6, -4, 1
		

Crossrefs

Cf. A124745 (row sums), A124746 (diagonal sums), A124747 (inverse).

Programs

  • Mathematica
    Table[(-1)^(n-k)*Binomial[Floor[k/2], n-k], {n, 0, 15}, {k, 0, n}] (* Paolo Xausa, Aug 27 2024 *)

Formula

T(n,k) = binomial(floor(k/2),n-k)*(-1)^(n-k)
Column k has g.f. x^k*(1-x)^floor(k/2). - Paul Barry, Feb 01 2007

A124789 Expansion of (1+x^2)/(1-x^4-x^5).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 7, 8, 8, 9, 12, 15, 16, 17, 21, 27, 31, 33, 38, 48, 58, 64, 71, 86, 106, 122, 135, 157, 192, 228, 257, 292, 349, 420, 485, 549, 641, 769, 905, 1034, 1190, 1410, 1674, 1939, 2224, 2600, 3084, 3613
Offset: 0

Views

Author

Paul Barry, Nov 07 2006

Keywords

Comments

Diagonal sums of A124788.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x^2)/(1-x^4-x^5),{x,0,60}],x] (* or *) LinearRecurrence[ {0,0,0,1,1},{1,0,1,0,1},60] (* Harvey P. Dale, Aug 20 2013 *)

Formula

a(n) = Sum_{k=0..floor(n/2)} C(floor(k/2),n-2*k).
a(n) = A017827(n)+A017827(n-2). - R. J. Mathar, May 09 2013
a(n) = A103372(n-3) for n >= 4. - Georg Fischer, Nov 03 2018
a(n) = (-1)^n*A124746(n). - R. J. Mathar, Jun 30 2020
Showing 1-2 of 2 results.