A124751 Expansion of (1+x^2+x^4)/(1-x^6+x^7).
1, 0, 1, 0, 1, 0, 1, -1, 1, -1, 1, -1, 1, -2, 2, -2, 2, -2, 2, -3, 4, -4, 4, -4, 4, -5, 7, -8, 8, -8, 8, -9, 12, -15, 16, -16, 16, -17, 21, -27, 31, -32, 32, -33, 38, -48, 58, -63, 64, -65, 71, -86, 106, -121, 127, -129, 136, -157, 192, -227, 248
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1,-1).
Programs
-
Mathematica
CoefficientList[Series[(1+x^2+x^4)/(1-x^6+x^7),{x,0,100}],x] (* or *) LinearRecurrence[{0,0,0,0,0,1,-1},{1,0,1,0,1,0,1},100] (* Harvey P. Dale, Mar 10 2017 *)
Formula
a(n)=sum{k=0..floor(n/2), C(floor(k/3),n-2k)*(-1)^n}
Comments