cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A124789 Expansion of (1+x^2)/(1-x^4-x^5).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 7, 8, 8, 9, 12, 15, 16, 17, 21, 27, 31, 33, 38, 48, 58, 64, 71, 86, 106, 122, 135, 157, 192, 228, 257, 292, 349, 420, 485, 549, 641, 769, 905, 1034, 1190, 1410, 1674, 1939, 2224, 2600, 3084, 3613
Offset: 0

Views

Author

Paul Barry, Nov 07 2006

Keywords

Comments

Diagonal sums of A124788.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x^2)/(1-x^4-x^5),{x,0,60}],x] (* or *) LinearRecurrence[ {0,0,0,1,1},{1,0,1,0,1},60] (* Harvey P. Dale, Aug 20 2013 *)

Formula

a(n) = Sum_{k=0..floor(n/2)} C(floor(k/2),n-2*k).
a(n) = A017827(n)+A017827(n-2). - R. J. Mathar, May 09 2013
a(n) = A103372(n-3) for n >= 4. - Georg Fischer, Nov 03 2018
a(n) = (-1)^n*A124746(n). - R. J. Mathar, Jun 30 2020

A124790 A generalized Motzkin triangle.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 3, 4, 3, 2, 1, 0, 6, 9, 6, 5, 2, 1, 0, 15, 21, 15, 12, 6, 3, 1, 0, 36, 51, 36, 30, 15, 9, 3, 1, 0, 91, 127, 91, 76, 40, 25, 10, 4, 1, 0, 232, 323, 232, 196, 105, 69, 29, 14, 4, 1
Offset: 0

Views

Author

Paul Barry, Nov 07 2006

Keywords

Comments

Columns include A005043, A001006, A002026. Row sums are A124791. For even k, column k has g.f. x^k*M(x)^(k/2), where M(x)=2/(1-x+sqrt(1-2x-3x^2)) is the g.f. of A001006. For odd k, column k has g.f. x^k*S(x)*M(x)^floor(k/2), S(x)=(1+x-sqrt(1-2x-3x^2))/(2x(1+x)), the g.f. of A005043.

Examples

			Triangle begins
1,
0, 1,
0, 0, 1,
0, 1, 1, 1,
0, 1, 2, 1, 1,
0, 3, 4, 3, 2, 1,
0, 6, 9, 6, 5, 2, 1,
0, 15, 21, 15, 12, 6, 3, 1,
0, 36, 51, 36, 30, 15, 9, 3, 1,
0, 91, 127, 91, 76, 40, 25, 10, 4, 1,
0, 232, 323, 232, 196, 105, 69, 29, 14, 4, 1
Production matrix begins
0, 1,
0, 0, 1,
0, 1, 1, 1,
0, 0, 0, 0, 1,
0, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1
- _Paul Barry_, Apr 07 2011
		

Formula

Triangle is the product of A124788 and A124305, that is, it is the product of the expansion of (1+x*y)/(1-x^2*y^2-x^3*y^2) and the inverse of the Riordan array (1,x(1-x^2)).

A124816 Product of Riordan array (1,x(1-x^2))^(-1) and number triangle T(n,k)=C(floor(k/2),n-k).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 1, 1, 0, 3, 3, 3, 2, 1, 0, 0, 7, 4, 5, 2, 1, 0, 12, 12, 12, 10, 6, 3, 1, 0, 0, 30, 18, 24, 12, 9, 3, 1, 0, 55, 55, 55, 50, 32, 22, 10, 4, 1, 0, 0, 143, 88, 121, 66, 57, 25, 14, 4, 1, 0, 273, 273, 273
Offset: 0

Views

Author

Paul Barry, Nov 08 2006

Keywords

Comments

Product of A124305 and A124788. Columns include aerated A001764,A047749(n+1),A124817,A084081. Row sums are A124818.

Examples

			Triangle begins
1,
0, 1,
0, 0, 1,
0, 1, 1, 1,
0, 0, 2, 1, 1,
0, 3, 3, 3, 2, 1,
0, 0, 7, 4, 5, 2, 1,
0, 12, 12, 12, 10, 6, 3, 1,
0, 0, 30, 18, 24, 12, 9, 3, 1,
0, 55, 55, 55, 50, 32, 22, 10, 4, 1
		

Crossrefs

Cf. A124790.

A127829 Number triangle mod(C(floor(k/2),n-k),2).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Feb 01 2007

Keywords

Comments

Row sums are A127830. Inverse is A127831.

Examples

			Triangle begins
1,
0, 1,
0, 0, 1,
0, 0, 1, 1,
0, 0, 0, 1, 1,
0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1, 1, 1,
0, 0, 0, 0, 0, 0, 1, 1, 1,
0, 0, 0, 0, 0, 0, 1, 1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1
		

Formula

T(n,k)=mod(A124788(n,k),2)
Showing 1-4 of 4 results.