cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124793 Numbers in a perpendicular plane intersecting a 3D clockwise spiral produced by powers of 2.

Original entry on oeis.org

1, 5, 35, 157, 1123, 5021, 35939, 160669, 1150051, 5141405, 36801635, 164524957, 1177652323, 5264798621, 37684874339, 168473555869, 1205915978851, 5391153787805, 38589311323235, 172516921209757, 1234857962343523
Offset: 1

Views

Author

Keywords

Comments

The general formula for powers of k integer is a(n) = k^((1/4)*(10*n - 7 - (-1)^n)) + k^((1/4)*(10*n - 1 + (-1)^n)) - a(n-1), with a(0)=1 and where k is an integer value. If we replace k with "i" or "-i" where i=sqrt(-1), we get a periodic complex sequence (period 8).

Examples

			Write powers of 2 in a sort of 3D clockwise spiral. After the initial 1 (2^0) move right till 2^1=2 (practically only one step); then move down till 2^2=4 (3,4); then left till 2^3=8 (5,6,7,8). When writing number 5 we are in the same column of 1 so 5 is the second number of the sequence. Then move up till 2^4=16. Then move up perpendicularly to the plane till 2^5=32 and again right till 2^6=64. The number 35 is in the sequence because it lies in the same line as 1 and 5. The process continues down, left, up, perpendicular, right and so on.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local a,i,x,y; a:=1; print(a); for i from 1 by 1 to n do x:=1/4*(10*i-7-(-1)^i); y:=1/4*(10*i-1+(-1)^i); a:=2^x+2^y-a; print(a); od; end: P(100);
  • Mathematica
    LinearRecurrence[{-1, 32, 32}, {1, 5, 35}, 25] (* Paolo Xausa, Feb 23 2024 *)

Formula

a(n) = 2^((1/4)*(10*n - 7 - (-1)^n)) + 2^((1/4)*(10*n - 1 + (-1)^n)) - a(n-1), with a(0)=1.
From Colin Barker, Jul 07 2012: (Start)
a(n) = -a(n-1) + 32*a(n-2) + 32*a(n-3).
G.f.: x*(1+2*x)*(1+4*x)/((1+x)*(1-32*x^2)). (End)
a(2n) = 3/31 + 19*32^n/124, a(2n+1) = -3/31 + 136*32^n/124. [R. J. Mathar, Jul 10 2012]