cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124806 Number of circular n-letter words over the alphabet {0,1,2,3,4} with adjacent letters differing by at most 2.

Original entry on oeis.org

1, 5, 19, 65, 247, 955, 3733, 14649, 57583, 226505, 891219, 3507047, 13801285, 54313277, 213745019, 841177105, 3310392415, 13027820227, 51270096661, 201769982673, 794052091767, 3124938240153, 12297982928987, 48397879544975
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

Empirical: a(base, n) = a(base-1, n) + A005191(n+1) for base >= 2*floor(n/2) + 1 where base is the number of letters in the alphabet.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-3*x^2-10*x^3+3*x^4+4*x^5)/((1-x-x^2)*(1-4*x+x^3)) )); // G. C. Greubel, Aug 03 2023
    
  • Mathematica
    LinearRecurrence[{5,-3,-5,1,1}, {1,5,19,65,247,955}, 60] (* G. C. Greubel, Aug 03 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A124806
        if (n<6): return (1,5,19,65,247,955)[n]
        else: return 5*a(n-1)-3*a(n-2)-5*a(n-3)+a(n-4)+a(n-5)
    [a(n) for n in range(31)] # G. C. Greubel, Aug 03 2023

Formula

From Colin Barker, Jun 04 2017: (Start)
G.f.: (1 - 3*x^2 - 10*x^3 + 3*x^4 + 4*x^5) / ((1 - x - x^2)*(1 - 4*x + x^3)).
a(n) = 5*a(n-1) - 3*a(n-2) - 5*a(n-3) + a(n-4) + a(n-5) for n>5. (End)
a(n) = -4*[n=0] + LucasL(n-1) + 3*A099503(n) - 8*A099503(n-1). - G. C. Greubel, Aug 03 2023