A260158 Expansion of psi(x)^4 * psi(-x^3) / f(x) in powers of x where psi, f() are Ramanujan theta functions.
1, 3, 4, 6, 7, 6, 10, 12, 13, 15, 14, 18, 18, 21, 22, 18, 25, 27, 28, 24, 26, 33, 34, 42, 37, 30, 36, 42, 43, 45, 38, 48, 49, 42, 54, 42, 56, 57, 58, 60, 43, 63, 64, 66, 67, 63, 70, 60, 73, 84, 62, 78, 79, 72, 72, 66, 90, 87, 88, 90, 74, 78, 98, 96, 97, 78
Offset: 0
Keywords
Examples
G.f. = 1 + 3*x + 4*x^2 + 6*x^3 + 7*x^4 + 6*x^5 + 10*x^6 + 12*x^7 + 13*x^8 + ... G.f. = q^7 + 3*q^23 + 4*q^39 + 6*q^55 + 7*q^71 + 6*q^87 + 10*q^103 + 12*q^119 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := If[ n < 0, 0, With[ {m = 6 n + 5}, DivisorSum[ m, m/# KroneckerSymbol[ 12, #]&] / 4]]; a[ n_] := SeriesCoefficient[ 2^(-9/2) x^(-7/8) EllipticTheta[ 2, 0, x^(1/2)]^4 EllipticTheta[ 2, Pi/4, x^(3/2)] / QPochhammer[ -x], {x, 0, n}];
-
PARI
{a(n) = my(m); if( n<0, 0, m = 6*n + 5; sumdiv( m, d, m/d * kronecker( 12, d)) / 4)};
-
PARI
{a(n) = if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / (eta(x + A)^3 * eta(x^6 + A)), n))};
Comments