A124844 Triangle T(n,k)=binomial(n,k)*A061084(k), 0<=k<=n, read by rows.
1, 1, 2, 1, 4, -1, 1, 6, -3, 3, 1, 8, -6, 12, -4, 1, 10, -10, 30, -20, 7, 1, 12, -15, 60, -60, 42, -11, 1, 14, -21, 105, -140, 147, -77, 18, 1, 16, -28, 168, -280, 392, -308, 144, -29, 1, 18, -36, 252, -504, 882, -924, 648, -261, 47, 1, 20, -45, 360, -840, 1764, -2310, 2160, -1305, 470, -76
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 2; 1, 4, -1; 1, 6, -3, 3; 1, 8, -6, 12, -4; 1, 10, -10, 30, -20, 7; 1, 12, -15, 60, -60, 42, -11; 1, 14, -21, 105, -140, 147, -77, 18; ...
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
Programs
-
Haskell
import Data.List (inits) a124844 n k = a124844_tabl !! n !! k a124844_row n = a124844_tabl !! n a124844_tabl = zipWith (zipWith (*)) a007318_tabl $ tail $ inits a061084_list -- Reinhard Zumkeller, Sep 15 2015
Formula
We let A061084 = the diagonal of an infinite matrix, M. Perform P*M and extract the zeros, where P = Pascal's triangle as an infinite lower triangular matrix.