cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A124876 Number of prime factors (counted with multiplicity) in factorization of A007408(n).

Original entry on oeis.org

0, 2, 1, 3, 2, 4, 3, 2, 3, 5, 3, 3, 3, 2, 1, 4, 2, 5, 1, 3, 2, 6, 2, 4, 2, 1, 3, 5, 3, 6, 1, 2, 3, 2, 3, 10, 4, 4, 5, 5, 8, 7, 7, 2, 4, 7, 3, 2, 4, 3, 2, 5, 3, 4, 2, 8, 3, 4, 4, 5, 3, 3, 7, 2, 5, 10, 4, 2, 6, 8, 3, 6, 6, 4, 3, 6, 4, 7, 4, 4, 3, 4, 8, 5, 7, 4
Offset: 1

Views

Author

M. F. Hasler, Nov 11 2006

Keywords

Examples

			a(1) = 0 since A007408(1) = 1 contains no prime factor,
a(2) = 2 since A007408(2) = 9 = 3 * 3,
a(3) = 1 since A007408(3) = 251 is prime,
a(6) = 4 since A007408(6) = 7 * 7 * 11 * 53.
		

Crossrefs

Programs

  • Maple
    seq( add(op(2,j),j=op(2,(ifactors@A007408)(n))), n=1..28 );
    A001222 := proc(n) numtheory[bigomega](n) ; end: b := fscanf("b007408.txt","%d %d") : while b <> [] do printf("%d, ",A001222(op(2,b))) ; b := fscanf("b007408.txt","%d %d") : od : # R. J. Mathar, May 18 2007
  • Mathematica
    Table[PrimeOmega[Numerator[Sum[1/k^3, {k, 1, n}]]], {n, 1, 50}] (* Amiram Eldar, Feb 09 2020 *)
    PrimeOmega[Numerator[Accumulate[1/Range[50]^3]]] (* Harvey P. Dale, Aug 28 2023 *)

Formula

a(n) = A001222(A007408(n)). - R. J. Mathar, May 18 2007

Extensions

More terms from R. J. Mathar, May 18 2007
More terms from Amiram Eldar, Feb 09 2020

A124874 Number of distinct primes dividing A007408(n).

Original entry on oeis.org

0, 1, 1, 3, 2, 3, 3, 2, 3, 4, 3, 2, 3, 2, 1, 3, 2, 4, 1, 3, 2, 5, 2, 4, 2, 1, 3, 4, 3, 5, 1, 2, 3, 2, 3, 8, 4, 4, 5, 4, 8, 6, 7, 2, 4, 6, 3, 2, 4, 3, 2, 4, 3, 4, 2, 8, 3, 3, 4, 4, 3, 3, 7, 2, 5, 9, 4, 2, 6, 7, 3, 5, 6, 4, 3, 6, 4, 6, 4, 4, 3, 3, 8, 5, 7, 4, 5
Offset: 1

Views

Author

M. F. Hasler, Nov 11 2006

Keywords

Examples

			a(1) = 0 since no prime divides A007408(1) = 1,
a(2) = 1 since 3 is the only prime dividing A007408(2) = 9,
a(3) = 1 since A007408(3) = 251 is prime,
a(4) = 3 since A007408(4) = 5 * 11 * 37,
a(6) = 3 since 7, 11, 53 are the only primes dividing A007408(6) = 7^2 * 11 * 53.
		

Crossrefs

Programs

  • Maple
    seq( (nops@op)(2,(ifactors@A007408)(n)),n=1..25);
  • Mathematica
    Table[PrimeNu[Numerator[Sum[1/k^3, {k, 1, n}]]], {n, 1, 50}] (* Amiram Eldar, Feb 09 2020 *)

Formula

a(n) = A001221(A007408(n)).

Extensions

More terms from Amiram Eldar, Feb 09 2020

A124875 Greatest prime dividing A007408(n).

Original entry on oeis.org

3, 251, 37, 5449, 53, 2591, 2538983, 462191, 4957, 5042929, 151099201553, 119465070161, 8868751511, 56154295334575853, 4480577578703, 1254664312327399, 34237559, 1683118856778495358491487, 294307265949353, 46956374669685791, 46572151, 110732345922475922393023393
Offset: 2

Views

Author

M. F. Hasler, Nov 11 2006

Keywords

Comments

For all n>2, the exponent of a(n) in the factorization of A007408(n) appears to be 1.

Examples

			The offset is 2 since A007408(1) = 1 has no prime divisors at all.
a(2) = 3 is the largest prime dividing A007408(2) = 9,
a(3) = 251 is the largest prime dividing A007408(3) = 251,
a(4) = 37 since A007408(4) = 5 * 11 * 37.
		

Crossrefs

Programs

  • Maple
    seq(op([ -1,-2],op(-1,ifactors(A007408(n)))),n=2..25);
  • Mathematica
    Table[FactorInteger[Numerator[Sum[1/k^3, {k, 1, n}]]][[-1, 1]], {n, 2, 20}] (* Amiram Eldar, Feb 09 2020 *)

Formula

a(n) = A006530(A007408(n)). - Amiram Eldar, Feb 09 2020

Extensions

Data corrected and extended by Amiram Eldar, Feb 09 2020
Showing 1-3 of 3 results.