A124876 Number of prime factors (counted with multiplicity) in factorization of A007408(n).
0, 2, 1, 3, 2, 4, 3, 2, 3, 5, 3, 3, 3, 2, 1, 4, 2, 5, 1, 3, 2, 6, 2, 4, 2, 1, 3, 5, 3, 6, 1, 2, 3, 2, 3, 10, 4, 4, 5, 5, 8, 7, 7, 2, 4, 7, 3, 2, 4, 3, 2, 5, 3, 4, 2, 8, 3, 4, 4, 5, 3, 3, 7, 2, 5, 10, 4, 2, 6, 8, 3, 6, 6, 4, 3, 6, 4, 7, 4, 4, 3, 4, 8, 5, 7, 4
Offset: 1
Keywords
Examples
a(1) = 0 since A007408(1) = 1 contains no prime factor, a(2) = 2 since A007408(2) = 9 = 3 * 3, a(3) = 1 since A007408(3) = 251 is prime, a(6) = 4 since A007408(6) = 7 * 7 * 11 * 53.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..106
Programs
-
Maple
seq( add(op(2,j),j=op(2,(ifactors@A007408)(n))), n=1..28 ); A001222 := proc(n) numtheory[bigomega](n) ; end: b := fscanf("b007408.txt","%d %d") : while b <> [] do printf("%d, ",A001222(op(2,b))) ; b := fscanf("b007408.txt","%d %d") : od : # R. J. Mathar, May 18 2007
-
Mathematica
Table[PrimeOmega[Numerator[Sum[1/k^3, {k, 1, n}]]], {n, 1, 50}] (* Amiram Eldar, Feb 09 2020 *) PrimeOmega[Numerator[Accumulate[1/Range[50]^3]]] (* Harvey P. Dale, Aug 28 2023 *)
Formula
Extensions
More terms from R. J. Mathar, May 18 2007
More terms from Amiram Eldar, Feb 09 2020
Comments