cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124920 Location of record values in A080577; also partial sums of A006128 plus 1.

Original entry on oeis.org

1, 2, 5, 11, 23, 43, 78, 132, 218, 346, 538, 813, 1212, 1768, 2548, 3616, 5079, 7044, 9688, 13186, 17816, 23868, 31767, 41973, 55147, 71998, 93520, 120814, 155359, 198812, 253375, 321510, 406437, 511803, 642265, 803141, 1001155, 1243967
Offset: 1

Views

Author

Alford Arnold, Nov 13 2006

Keywords

Examples

			A080577 begins
1
2 11
3 21 111
4 31 22 211 1111
5 41 32 311 221 2111 11111
6 51 42 411 33 321 3111 222 2211 21111 111111
therefore A124920 begins 1 2 5 11 23 ...
		

Crossrefs

Programs

  • Maple
    A008284 := proc(n,k) if n >= 1 and n = k or k = 1 then 1 elif k > n then 0 else add( A008284(n-k,i),i=1..k) ; fi ; end: A006128 := proc(n) add( k*A008284(n,k),k=1..n) ; end: a := 1 : printf("%d,",a) ; for n from 2 to 80 do a := a + A006128(n-1) : printf("%d,",a) ; od : # R. J. Mathar, Jan 13 2007

Formula

A124920(n) = A124920(n-1)+ A006128(n-1), n>1; a(1) = 1.
G.f.: x/(1 - x) + Sum_{i>=1} i*x^(i+1)/(1 - x) * Product_{j=1..i} 1/(1 - x^j). - Ilya Gutkovskiy, Apr 04 2017
a(n) ~ exp(Pi*sqrt(2*n/3)) * (log(6*n) + 2*gamma - 2*log(Pi)) * sqrt(3) / (4*Pi^2), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, May 19 2018

Extensions

More terms from R. J. Mathar, Jan 13 2007
Clarification of name from Ilya Gutkovskiy, Apr 04 2017