cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124921 Distributes the number of permutations in the alternating group; cf. A060351.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 5, 2, 5, 8, 5, 2, 2, 5, 8, 5, 2, 5, 2, 1, 1, 2, 8, 4, 9, 18, 12, 6, 8, 19, 31, 17, 12, 21, 9, 3, 2, 10, 19, 14, 18, 30, 21, 6, 4, 14, 17, 10, 6, 6, 3, 0
Offset: 0

Views

Author

Alford Arnold, Nov 16 2006

Keywords

Comments

The symmetric group distribution of permutation descents is summarized in Table A008292; for example 1 57 302 302 57 1 sums the following A060351 values:
1.......5.......10.......10.......5.......1
.......14.......35.......35.......14.......
.......19.......26.......40.......19.......
.......14.......40.......19.......14.......
........5.......61.......26.......5.......
................26.......61..............
................19.......40..............
................40.......26..............
................35.......35..............
................10.......10..............

Examples

			The distribution is based on the frequency of descents; for example, when permuting four symbols the 12 patterns are ddd ddu dud udu dud duu udd udu dud udu uud and uuu yielding the frequency distribution 1 1 3 1 1 3 1 1.
Triangle T(n,k) begins:
  1;
  1;
  1, 0;
  1, 1, 1, 0;
  1, 1, 3, 1, 1, 3, 1, 1;
  1, 2, 5, 2, 5, 8, 5, 2, 2, 5, 8, 5, 2, 5, 2, 1;
  ...
		

Crossrefs

Cf. A001710 (row sums), A008292, A060351, A011782 (row lengths).

Programs

  • Maple
    b:= proc(u, o, t, h) option remember; expand(`if`(u+o=0, h,
          add(b(u-j, o+j-1, t+1, irem(h+u-j, 2))*x^floor(2^(t-1)), j=1..u)+
          add(b(u+j-1, o-j, t+1, irem(h+u+j-1, 2)), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..ceil(2^(n-1)-1)))(b(n, 0$2, 1)):
    seq(T(n), n=0..7);  # Alois P. Heinz, Sep 09 2020
  • Mathematica
    b[u_, o_, t_, h_] := b[u, o, t, h] = Expand[If[u+o == 0, h,
         Sum[b[u-j, o+j-1, t+1, Mod[h+u-j, 2]]*x^Floor[2^(t-1)], {j, 1, u}]+
         Sum[b[u+j-1, o-j, t+1, Mod[h+u+j-1, 2]], {j, 1, o}]]];
    T[n_] := With[{p = b[n, 0, 0, 1]}, Table[Coefficient[p, x, i],
         {i, 0, Ceiling[2^(n-1)-1]}]];
    T /@ Range[0, 7] // Flatten (* Jean-François Alcover, Feb 14 2021, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Sep 09 2020