cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124926 Triangle read by rows: T(n,k) = binomial(n,k)*r(k), where r(k) are the Riordan numbers (r(k) = A005043(k); 0 <= k <= n).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 6, 4, 3, 1, 0, 10, 10, 15, 6, 1, 0, 15, 20, 45, 36, 15, 1, 0, 21, 35, 105, 126, 105, 36, 1, 0, 28, 56, 210, 336, 420, 288, 91, 1, 0, 36, 84, 378, 756, 1260, 1296, 819, 232, 1, 0, 45, 120, 630, 1512, 3150, 4320, 4095, 2320, 603
Offset: 0

Views

Author

Gary W. Adamson, Nov 12 2006

Keywords

Comments

Row sums = Catalan numbers, A000108: (1, 1, 2, 5, 14, 42...); e.g., sum of row 4 terms = A000108(4) = 14 = (1 + 0 + 6 + 4 + 3). A005043 is the inverse binomial transform of the Catalan numbers.

Examples

			First few rows of the triangle:
  1;
  1,  0;
  1,  0,  1;
  1,  0,  3,  1;
  1,  0,  6,  4,  3;
  1,  0, 10, 10, 15,  6;
  1,  0, 15, 20, 45, 36, 15;
  ...
		

Crossrefs

Programs

  • GAP
    B:=Binomial;;  Flat(List([0..12], n-> List([0..n], k-> B(n,k)* Sum([0..k], j-> (-1)^j*B(k+1,j)*B(2*(k-j), k-j))/(k+1) ))); # G. C. Greubel, Nov 19 2019
  • Magma
    B:=Binomial; [B(n,k)*(&+[(-1)^j*B(k+1,j)*B(2*(k-j), k-j): j in [0..k]])/(k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 19 2019
    
  • Maple
    r:=n->(1/(n+1))*sum((-1)^i*binomial(n+1,i)*binomial(2*n-2*i,n-i),i=0..n): T:=(n,k)->r(k)*binomial(n,k): for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_]:= T[n, k]= Binomial[n, k]*Sum[(-1)^j*Binomial[k+1, j]* Binomial[2*(k-j), k-j], {j,0,k}]/(k+1); Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 19 2019 *)
  • PARI
    T(n,k) = b=binomial; b(n,k)*sum(j=0,k, (-1)^j*b(k+1,j)*b(2*(k-j), k-j))/(k+1); \\ G. C. Greubel, Nov 19 2019
    
  • Sage
    b=binomial; [[b(n,k)*sum((-1)^j*b(k+1,j)*b(2*(k-j), k-j) for j in (0..k))/(k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 19 2019
    

Extensions

Edited by N. J. A. Sloane, Nov 29 2006