A124926 Triangle read by rows: T(n,k) = binomial(n,k)*r(k), where r(k) are the Riordan numbers (r(k) = A005043(k); 0 <= k <= n).
1, 1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 6, 4, 3, 1, 0, 10, 10, 15, 6, 1, 0, 15, 20, 45, 36, 15, 1, 0, 21, 35, 105, 126, 105, 36, 1, 0, 28, 56, 210, 336, 420, 288, 91, 1, 0, 36, 84, 378, 756, 1260, 1296, 819, 232, 1, 0, 45, 120, 630, 1512, 3150, 4320, 4095, 2320, 603
Offset: 0
Examples
First few rows of the triangle: 1; 1, 0; 1, 0, 1; 1, 0, 3, 1; 1, 0, 6, 4, 3; 1, 0, 10, 10, 15, 6; 1, 0, 15, 20, 45, 36, 15; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Chao-Jen Wang, Applications of the Goulden-Jackson cluster method to counting Dyck paths by occurrences of subwords, Dissertation, Brandeis University, 2011.
Programs
-
GAP
B:=Binomial;; Flat(List([0..12], n-> List([0..n], k-> B(n,k)* Sum([0..k], j-> (-1)^j*B(k+1,j)*B(2*(k-j), k-j))/(k+1) ))); # G. C. Greubel, Nov 19 2019
-
Magma
B:=Binomial; [B(n,k)*(&+[(-1)^j*B(k+1,j)*B(2*(k-j), k-j): j in [0..k]])/(k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 19 2019
-
Maple
r:=n->(1/(n+1))*sum((-1)^i*binomial(n+1,i)*binomial(2*n-2*i,n-i),i=0..n): T:=(n,k)->r(k)*binomial(n,k): for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
T[n_, k_]:= T[n, k]= Binomial[n, k]*Sum[(-1)^j*Binomial[k+1, j]* Binomial[2*(k-j), k-j], {j,0,k}]/(k+1); Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 19 2019 *)
-
PARI
T(n,k) = b=binomial; b(n,k)*sum(j=0,k, (-1)^j*b(k+1,j)*b(2*(k-j), k-j))/(k+1); \\ G. C. Greubel, Nov 19 2019
-
Sage
b=binomial; [[b(n,k)*sum((-1)^j*b(k+1,j)*b(2*(k-j), k-j) for j in (0..k))/(k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 19 2019
Extensions
Edited by N. J. A. Sloane, Nov 29 2006
Comments