cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124929 Triangle read by rows: T(n,k) = (2^k-1)*binomial(n-1,k-1) (1<=k<=n).

Original entry on oeis.org

1, 1, 3, 1, 6, 7, 1, 9, 21, 15, 1, 12, 42, 60, 31, 1, 15, 70, 150, 155, 63, 1, 18, 105, 300, 465, 378, 127, 1, 21, 147, 525, 1085, 1323, 889, 255, 1, 24, 196, 840, 2170, 3528, 3556, 2040, 511, 1, 27, 252, 1260, 3906, 7938, 10668, 9180, 4599, 1023
Offset: 1

Views

Author

Gary W. Adamson, Nov 12 2006

Keywords

Comments

Row sums give A027649.

Examples

			First few rows of the triangle are:
  1;
  1,  3;
  1,  6,  7;
  1,  9, 21,  15;
  1, 12, 42,  60,  31;
  1, 15, 70, 150, 155, 63;
...
		

Crossrefs

Cf. A027649.

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> (2^k -1)*Binomial(n-1,k-1) ))); # G. C. Greubel, Nov 19 2019
  • Magma
    [(2^k -1)*Binomial(n-1,k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 19 2019
    
  • Maple
    T:=(n,k)->(2^k-1)*binomial(n-1,k-1): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    Table[(2^k -1)*Binomial[n-1, k-1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jun 08 2017 *)
  • PARI
    for(n=1,12, for(k=1,n, print1((2^k -1)*binomial(n-1,k-1), ", "))) \\ G. C. Greubel, Jun 08 2017
    
  • Sage
    [[(2^k -1)*binomial(n-1,k-1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 19 2019
    

Extensions

Edited by N. J. A. Sloane, Nov 29 2006