A124932 Triangle read by rows: T(n,k) = k*(k+1)*binomial(n,k)/2 (1 <= k <= n).
1, 2, 3, 3, 9, 6, 4, 18, 24, 10, 5, 30, 60, 50, 15, 6, 45, 120, 150, 90, 21, 7, 63, 210, 350, 315, 147, 28, 8, 84, 336, 700, 840, 588, 224, 36, 9, 108, 504, 1260, 1890, 1764, 1008, 324, 45, 10, 135, 720, 2100, 3780, 4410, 3360, 1620, 450, 55
Offset: 1
Examples
First few rows of the triangle: 1; 2, 3; 3, 9, 6; 4, 18, 24, 10; 5, 30, 60, 50, 15; 6, 45, 120, 150, 90, 21; 7, 63, 210, 350, 315, 147, 28; ... From _Mats Granvik_, Dec 18 2009: (Start) The numbers in this triangle are sums of the following recursive number blocks: 1................................ ................................. 11.....12........................ ................................. 111....112....123................ .......122....................... ................................. 1111...1112...1123...1234........ .......1122...1223............... .......1222...1233............... ................................. 11111..11112..11123..11234..12345 .......11122..11223..12234....... .......11222..12223..12334....... .......12222..11233..12344....... ..............12233.............. ..............12333.............. ................................. (End)
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Crossrefs
Cf. A001793.
Programs
-
GAP
B:=Binomial;; Flat(List([1..12], n-> List([1..n], k-> B(k+1,2)* B(n,k) ))); # G. C. Greubel, Nov 19 2019
-
Magma
B:=Binomial; [B(k+1,2)*B(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 19 2019
-
Maple
T:=(n,k)->k*(k+1)*binomial(n,k)/2: for n from 1 to 12 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
-
Mathematica
Table[Binomial[k + 1, 2]*Binomial[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Nov 19 2019 *)
-
PARI
T(n,k) = binomial(k+1,2)*binomial(n,k); \\ G. C. Greubel, Nov 19 2019
-
Sage
b=binomial; [[b(k+1,2)*b(n,k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 19 2019
Formula
T(n,k) = binomial(k+1,2)*binomial(n,k). - G. C. Greubel, Nov 19 2019
Extensions
Edited by N. J. A. Sloane, Nov 24 2006
Comments