cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124932 Triangle read by rows: T(n,k) = k*(k+1)*binomial(n,k)/2 (1 <= k <= n).

Original entry on oeis.org

1, 2, 3, 3, 9, 6, 4, 18, 24, 10, 5, 30, 60, 50, 15, 6, 45, 120, 150, 90, 21, 7, 63, 210, 350, 315, 147, 28, 8, 84, 336, 700, 840, 588, 224, 36, 9, 108, 504, 1260, 1890, 1764, 1008, 324, 45, 10, 135, 720, 2100, 3780, 4410, 3360, 1620, 450, 55
Offset: 1

Views

Author

Gary W. Adamson, Nov 12 2006

Keywords

Comments

Row sums = A001793: (1, 5, 18, 56, 160, 432, ...).
Triangle is P*M, where P is the Pascal triangle as an infinite lower triangular matrix and M is an infinite bidiagonal matrix with (1,3,6,10,...) in the main diagonal and in the subdiagonal.
This number triangle can be used as a control sequence when listing combinations of subsets as in Pascals triangle by assigning a number to each element that corresponds to the n:th subset that the element belongs to. One then gets number blocks whose sums are the terms in this number triangle. - Mats Granvik, Jan 14 2009

Examples

			First few rows of the triangle:
  1;
  2,   3;
  3,   9,   6;
  4,  18,  24,  10;
  5,  30,  60,  50,  15;
  6,  45, 120, 150,  90,  21;
  7,  63, 210, 350, 315, 147,  28;
  ...
From _Mats Granvik_, Dec 18 2009: (Start)
The numbers in this triangle are sums of the following recursive number blocks:
1................................
.................................
11.....12........................
.................................
111....112....123................
.......122.......................
.................................
1111...1112...1123...1234........
.......1122...1223...............
.......1222...1233...............
.................................
11111..11112..11123..11234..12345
.......11122..11223..12234.......
.......11222..12223..12334.......
.......12222..11233..12344.......
..............12233..............
..............12333..............
.................................
(End)
		

Crossrefs

Cf. A001793.

Programs

  • GAP
    B:=Binomial;; Flat(List([1..12], n-> List([1..n], k-> B(k+1,2)* B(n,k) ))); # G. C. Greubel, Nov 19 2019
  • Magma
    B:=Binomial; [B(k+1,2)*B(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 19 2019
    
  • Maple
    T:=(n,k)->k*(k+1)*binomial(n,k)/2: for n from 1 to 12 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    Table[Binomial[k + 1, 2]*Binomial[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Nov 19 2019 *)
  • PARI
    T(n,k) = binomial(k+1,2)*binomial(n,k); \\ G. C. Greubel, Nov 19 2019
    
  • Sage
    b=binomial; [[b(k+1,2)*b(n,k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 19 2019
    

Formula

T(n,k) = binomial(k+1,2)*binomial(n,k). - G. C. Greubel, Nov 19 2019

Extensions

Edited by N. J. A. Sloane, Nov 24 2006