A124939 Prime tetrahedron, read by rows.
1, 1, 1, 2, 1, 1, 4, 1, 6, 5, 1, 1, 10, 1, 12, 7, 1, 16, 3, 8, 1, 1, 18, 1, 22, 9, 1, 28, 13, 24, 1, 30, 11, 20, 17, 1, 1, 36, 1, 40, 19, 1, 42, 25, 34, 1, 46, 15, 14, 23, 1, 52, 21, 26, 27, 32, 1, 1, 58, 1, 60, 29, 1, 66, 31, 48, 1, 70, 33, 38, 35, 1, 72, 37, 64, 39, 44, 1, 78, 49, 54, 43
Offset: 1
Examples
Tetrahedron begins ================= 1 ================= 1 1..2 ================= 1 1..4 1..6..5 ================= 1 1.10 1.12..7 1.16..3..8 ================= 1 1.18 1.22..9 1.28.13.24 1.30.11.20.17 =================
References
- R. K. Guy, Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 106, 1994.
- Kenney, M. J. "Student Math Notes." NCTM News Bulletin. Nov. 1986.
Links
- Eric Weisstein's World of Mathematics, Prime Triangle.
Crossrefs
Programs
-
Maple
srch := proc(a) local res ; res := 2 ; while true do if isprime(res+op(-1,a)) and not ( res in a ) then RETURN(res) ; fi ; res := res+1 ; od ; end: a := [] ; for lvl from 1 to 10 do for row from 1 to lvl do for col from 1 to row do if col = 1 then anxt := 1 ; else anxt := srch(a) ; fi ; printf("%d,",anxt) ; a := [op(a), anxt] ; od ; od ; od ; # R. J. Mathar, Jan 13 2007
Formula
a(n) flattens the 3-D table so that level 1 (the apex, with only the value 1) occurs first, then level 2 (with values 1, 1, 2), then level 3 ... and for each level, reads that triangle by rows.
Extensions
Corrected and extended by R. J. Mathar, Jan 13 2007
Comments