cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A343751 A(n,k) is the sum of all compositions [c_1, c_2, ..., c_k] of n into k nonnegative parts encoded as Product_{i=1..k} prime(i)^(c_i); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 5, 4, 0, 1, 10, 19, 8, 0, 1, 17, 69, 65, 16, 0, 1, 28, 188, 410, 211, 32, 0, 1, 41, 496, 1726, 2261, 665, 64, 0, 1, 58, 1029, 7182, 14343, 11970, 2059, 128, 0, 1, 77, 2015, 20559, 93345, 112371, 61909, 6305, 256, 0, 1, 100, 3478, 54814, 360612, 1139166, 848506, 315850, 19171, 512, 0
Offset: 0

Views

Author

Alois P. Heinz, Apr 27 2021

Keywords

Examples

			A(1,3) = 10 = 5 + 3 + 2, sum of encoded compositions [0,0,1], [0,1,0], [1,0,0].
A(4,2) = 211 = 81 + 54 + 36 + 24 + 16, sum of encoded compositions [0,4], [1,3], [2,2], [3,1], [4,0].
Square array A(n,k) begins:
  1,  1,    1,     1,      1,        1,        1, ...
  0,  2,    5,    10,     17,       28,       41, ...
  0,  4,   19,    69,    188,      496,     1029, ...
  0,  8,   65,   410,   1726,     7182,    20559, ...
  0, 16,  211,  2261,  14343,    93345,   360612, ...
  0, 32,  665, 11970, 112371,  1139166,  5827122, ...
  0, 64, 2059, 61909, 848506, 13379332, 89131918, ...
		

Crossrefs

Columns k=0-4 give: A000007, A000079, A001047(n+1), A016273, A025931.
Rows n=0-2 give: A000012, A007504, A357251.
Main diagonal gives A332967.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1,
         `if`(k=0, 0, add(ithprime(k)^i*A(n-i, k-1), i=0..n)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0, 1,
         `if`(k=0, 0, ithprime(k)*A(n-1, k)+A(n, k-1)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1,
         If[k == 0, 0, Prime[k] A[n-1, k] + A[n, k-1]]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Nov 06 2021, after 2nd Maple program *)

Formula

A(n,k) = [x^n] Product_{i=1..k} 1/(1-prime(i)*x).
A(n,k) = A124960(n+k,k) for k >= 1.

A332967 Sum of all integers m satisfying Omega(m) = n and pi(p) <= n for all prime factors p of m.

Original entry on oeis.org

1, 2, 19, 410, 14343, 1139166, 89131918, 10861230692, 1271028562739, 203393524967230, 52274418436233714, 11160490802017899420, 3415612116240107778630, 1088775430914588654276060, 311608007930071575510930780, 99738699420765496000734958440
Offset: 0

Views

Author

Alois P. Heinz, Mar 04 2020

Keywords

Examples

			a(2) = 4 + 6 + 9 = 2*2 + 2*3 + 3*3 = 19.
		

Crossrefs

Row sums of A330394.
Main diagonal of A343751.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          add(ithprime(j)*b(n-1, j), j=1..i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..17);

Formula

a(n) = [x^n] Product_{i=1..n} 1/(1-prime(i)*x).
a(n) = A124960(2n,n).
a(n) = Sum_{k=1..A088218(n)} A330394(n,k).
a(n) = A343751(n,n).

A330394 Irregular triangle T(n,k) read by rows in which n-th row lists in increasing order all integers m such that Omega(m) = n and each prime factor p of m has index pi(p) <= n.

Original entry on oeis.org

1, 2, 4, 6, 9, 8, 12, 18, 20, 27, 30, 45, 50, 75, 125, 16, 24, 36, 40, 54, 56, 60, 81, 84, 90, 100, 126, 135, 140, 150, 189, 196, 210, 225, 250, 294, 315, 350, 375, 441, 490, 525, 625, 686, 735, 875, 1029, 1225, 1715, 2401, 32, 48, 72, 80, 108, 112, 120, 162
Offset: 0

Views

Author

Robert Price, Mar 03 2020

Keywords

Comments

Positive integers not in T are: 3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 28, 29, ... .
Row n has exactly one squarefree member: primorial(n) = A002110(n).
Sorting all terms (except 1) gives A324521.

Examples

			Triangle T(n,k) begins:
  1;
  2;
  4,  6,  9;
  8, 12, 18, 20, 27, 30, 45, 50, 75, 125;
  ...
		

Crossrefs

Column k=1 gives A000079.
Last elements of rows give A307539.
Row lengths give A088218.
Row sums give A332967(n) = A124960(2n,n).
T(n,n) gives A101695(n) for n > 0.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1], [seq(
          map(x-> x*ithprime(j), b(n-1, j))[], j=1..i)])
        end:
    T:= n-> sort(b(n$2))[]:
    seq(T(n), n=0..5);  # Alois P. Heinz, Mar 03 2020
  • Mathematica
    t = Table[Union[Apply[Times, Tuples[Prime[Range[n]], {n}], {1}]], {n, 0, 5}];
    t // TableForm
    Flatten[t]
Showing 1-3 of 3 results.