cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124973 a(n) = Sum_{k=0..(n-2)/2} a(k)a*(n-1-k), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 11, 22, 42, 87, 174, 365, 745, 1587, 3303, 7103, 14974, 32477, 69284, 151172, 325077, 713400, 1545719, 3406989, 7423648, 16429555, 35992438, 79912474, 175785514, 391488688, 864591621, 1930333822, 4276537000
Offset: 0

Views

Author

Keywords

Comments

Number of unordered rooted trees with all outdegrees <= 2 and, if a node has two subtrees, they have a different number of nodes (equivalently, ordered rooted trees where the left subtree has more nodes than the right subtree).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          if n<2 then 1
        else add(a(j)*a(n-j-1), j=0..floor((n-2)/2))
          fi
        end:
    seq(a(n), n=0..40); # G. C. Greubel, Nov 19 2019
  • Mathematica
    a[n_]:= a[n]= If[n<2, 1, Sum[a[j]*a[n-j-1], {j, 0, (n-2)/2}]]; Table[a[n], {n, 0, 40}] (* G. C. Greubel, Nov 19 2019 *)
  • PARI
    a(n) = if(n<2, 1, sum(j=0, (n-2)\2, a(j)*a(n-j-1))); \\ G. C. Greubel, Nov 19 2019
    
  • Sage
    @CachedFunction
    def a(n):
        if (n<2): return 1
        else: return sum(a(j)*a(n-j-1) for j in (0..floor((n-2)/2)))
    [a(n) for n in (0..40)] # G. C. Greubel, Nov 19 2019

Formula

Lim_{n->infinity} a(n)^(1/n) = 2.327833478... - Vaclav Kotesovec, Nov 20 2019