A124973 a(n) = Sum_{k=0..(n-2)/2} a(k)a*(n-1-k), with a(0) = a(1) = 1.
1, 1, 1, 1, 2, 3, 6, 11, 22, 42, 87, 174, 365, 745, 1587, 3303, 7103, 14974, 32477, 69284, 151172, 325077, 713400, 1545719, 3406989, 7423648, 16429555, 35992438, 79912474, 175785514, 391488688, 864591621, 1930333822, 4276537000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= proc(n) option remember; if n<2 then 1 else add(a(j)*a(n-j-1), j=0..floor((n-2)/2)) fi end: seq(a(n), n=0..40); # G. C. Greubel, Nov 19 2019
-
Mathematica
a[n_]:= a[n]= If[n<2, 1, Sum[a[j]*a[n-j-1], {j, 0, (n-2)/2}]]; Table[a[n], {n, 0, 40}] (* G. C. Greubel, Nov 19 2019 *)
-
PARI
a(n) = if(n<2, 1, sum(j=0, (n-2)\2, a(j)*a(n-j-1))); \\ G. C. Greubel, Nov 19 2019
-
Sage
@CachedFunction def a(n): if (n<2): return 1 else: return sum(a(j)*a(n-j-1) for j in (0..floor((n-2)/2))) [a(n) for n in (0..40)] # G. C. Greubel, Nov 19 2019
Formula
Lim_{n->infinity} a(n)^(1/n) = 2.327833478... - Vaclav Kotesovec, Nov 20 2019
Comments