A125024 Minimal Goedel number of endofunctions on k points, by row and sorted within rows (number of points).
1, 2, 6, 12, 18, 30, 60, 90, 150, 540, 1500, 2250, 210, 420, 630, 1050, 1890, 2520, 3150, 3780, 7560, 9450, 15750, 18900, 28350, 75600, 113400, 126000, 141750, 216000, 246960, 5402250, 2310, 4620, 6930, 11550
Offset: 0
Examples
For example, take the endofunction on 4 points which is composed of two 2-cycles. We can write this as: (1, 2, 3, 4) -> (2, 1, 4, 3) which has the Goedel number 2^2 * 3^1 * 5^4 * 7^3 = 2572500. We can also renumber the points (applying the symmetric group S_n: n^n -> n^n) and write it: (1, 2, 3, 4) -> (3, 4, 1, 2) which gives us the Goedel number 2^3 * 3*4 * 5^1 * 7^2 = 158760. But the minimal Goedel number for that endofunction comes from: (1, 2, 3, 4) -> (4, 3, 2, 1) which gives us 756000. Hence I can enumerate all the minimal Goedel numbers for the 7 endofunctions on 4 points as: 30, 60, 90, 150, 540, 1500, 2250. Table begins: n | row(n) of Goedel numbers 0 | 1. (formally defining prime(0) = 1) 1 | 2. 2 | 6, 12, 18. 3 | 30, 60, 90, 150, 540, 1500, 2250. 4 | 210, 420, 630, 1050, 1890, 2520, 3150, 3780, 7560, 9450, 15750, 18900, 28350, 75600, 113400, 126000, 141750, 216000, 246960, 5402250. 5 | 2310, 4620, 6930, 11550, ... 6 | 30030, 60060, 90090, 150150, ... 7 | 510510, 1021020, 1531530, ... 8 | 9699690, 19399380.
Comments