A129438 Expansion of (phi(q) * phi(q^2) + phi(-q^2) * phi(q^4)) / 2 in powers of q where phi() is a Ramanujan theta function.
1, 1, 0, 2, 2, 0, 0, 0, 2, 3, 0, 2, 4, 0, 0, 0, 2, 2, 0, 2, 0, 0, 0, 0, 4, 1, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 6, 0, 0, 0, 0, 2, 0, 2, 4, 0, 0, 0, 4, 1, 0, 4, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 4, 0, 0, 0, 6, 2, 0, 2, 4, 0, 0, 0, 0, 5, 0, 2, 0, 0, 0
Offset: 0
Keywords
Examples
G.f. = 1 + q + 2*q^3 + 2*q^4 + 2*q^8 + 3*q^9 + 2*q^11 + 4*q^12 + 2*q^16 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] + EllipticTheta[ 4, 0, q^2] EllipticTheta[ 3, 0, q^4]) / 2, {q, 0, n}]; (* Michael Somos, Nov 11 2015 *)
-
PARI
{a(n) = if( n<1, n==0, qfrep([1, 0; 0, 8], n)[n] + qfrep([3, 1; 1, 3], n)[n])};
Formula
Moebius transform is period 32 sequence [1, -1, 1, 2, -1, -1, -1, 0, 1, 1, 1, 2, -1, 1, -1, 0, 1, -1, 1, -2, -1, -1, -1, 0, 1, 1, 1, -2, -1, 1, -1, 0, ...].
a(4*n + 2) = a(8*n + 5) = a(8*n + 7) = 0.
Comments