cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A327000 A(n, k) = A309522(n, k) - A327001(n, k) for n >= 0 and k >= 3, square array read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 6, 3, 9, 26, 10, 117, 68, 100, 35, 2574, 4500, 517, 365, 126, 70005, 748616, 199155, 4163, 1302, 462, 2082759, 192426260, 282846568, 10499643, 36180, 4606, 1716, 65061234, 59688349943, 799156187475, 141482705378, 663488532, 341733, 16284
Offset: 0

Views

Author

Peter Luschny, Aug 12 2019

Keywords

Examples

			Array starts:
n\k [  3    4        5            6                 7 ]
[0]    1,   6,       26,          100,              365, ...            [A125107]
[1]    1,   9,       68,          517,              4163, ...           [A048742]
[2]    3,   117,     4500,        199155,           10499643, ...       [A326995]
[3]    10,  2574,    748616,      282846568,        141482705378, ...   [A327002]
[4]    35,  70005,   192426260,   799156187475,     4961959681629275, ...
[5]    126, 2082759, 59688349943, 3097220486457142, 278271624962638244163, ...
   A001700,
		

Crossrefs

Programs

  • Maple
    ListTools:-Flatten([seq(seq(A309522(n-k, k) - A327001(n-k, k), k=3..n), n=3..10)]);

Formula

The columns for k = 0, 1, 2 are suppressed as they are identical 0.
A(0, k) = A000108(k) - A011782(k).
A(1, k) = A000142(k) - A000110(k).
A(2, k) = A002105(k) - A005046(k-1) for k >= 1.
A(3, k) = A018893(k) - A291973(k).
A(4, k) = A326999(k) - A291975(k).

A377659 a(n) = Motzkin(n) - 2^(n - 1 + 0^n) = A001006(n) - A011782(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 19, 63, 195, 579, 1676, 4774, 13463, 37739, 105442, 294188, 820699, 2291243, 6405310, 17937140, 50327731, 141498983, 398666071, 1125566111, 3184339189, 9026625285, 25636264044, 72940663938, 207889060481, 593474349373, 1696848600299, 4858687934567
Offset: 0

Views

Author

Peter Luschny, Nov 28 2024

Keywords

Comments

These are the Motzkin words of length n - 1 over the alphabet 0, 1, 2,... that contain at least one digit greater than 1. See the Sage program below.
An analogous construction with the Catalan numbers can be found in A125107.

Examples

			  N:       0, 1, 2, 3, 4,  5,  6,   7,   8,   9, ...
  A001006: 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, ...
  A011782: 1, 1, 2, 4, 8, 16, 32,  64, 128, 256, ...
  a:       0, 0, 0, 0, 1,  5, 19,  63, 195, 579, ...
.
For n = 5 the 5 Motzkin words of length 4 that have at least one term > 1 are:
  1221, 1211, 1210, 1121, 0121.
For n = 6 the 19 Motzkin words of length 5 that have at least one term > 1 are:
  12321, 12221, 12211, 12210, 12121, 12111, 12110, 12101, 12100, 11221, 11211, 11210, 11121, 10121, 01221, 01211, 01210, 01121, 00121.
		

Crossrefs

Programs

  • Maple
    gf := (1 - x - (1-2*x-3*x^2)^(1/2)) / (2*x^2) - (1 - x) / (1 - 2*x):
    ser := series(gf, x, 35): seq(coeff(ser, x, n), n = 0..30);
    # Alternative:
    a := n -> hypergeom([-n/2 + 1/2, -n/2], [2], 4) - 2^(n - 1 + 0^n);
    seq(simplify(a(n)), n = 0..29);
  • Mathematica
    A377659[n_] := If[n < 4, 0, HypergeometricPFQ[{-n/2, -n/2 + 1/2}, {2}, 4] - 2^(n - 1)];
    Array[A377659, 50, 0] (* Paolo Xausa, Dec 04 2024 *)
  • Python
    from itertools import islice
    show = lambda f, n: print(list(islice(f(), n)))
    def aGen():
        a, b, n, z = 1, 2, 2, 1
        yield 0
        while True:
            yield b//n - z
            n += 1; z *= 2
            a, b = b, (3*(n-1)*n*a + (2*n-1)*n*b)//((n+1)*(n-1))
    show(aGen, 31)
    
  • SageMath
    # Generates Motzkin words (for illustration only).
    def motzkin_words(n):
         return IntegerListsLex(length=n+1, min_slope=-1, max_slope=1,
                    ceiling=[0]+[+oo for i in range(n-1)]+[0])
    def MWList(n, show=True):
        c = 0
        for w in motzkin_words(n):
            if any(p > 1 for p in w):
                c += 1
                if show: print(''.join(map(str, w[1:-1])))
        return c
    for n in range(8): print(f"[{n}] -> {MWList(n)}")

Formula

a(n) = [x^n] (1 - x - (1 - 2*x - 3*x^2)^(1/2)) / (2*x^2) - (1 - x) / (1 - 2*x).
a(n) = hypergeom([-n/2, -n/2 + 1/2], [2], 4) - 2^(n - 1 + 0^n).

A326995 a(n) = A002105(n+1) - A005046(n), reduced tangent numbers minus the number of partitions of a 2*n-set into even blocks.

Original entry on oeis.org

0, 0, 0, 3, 117, 4500, 199155, 10499643, 663488532, 50115742365, 4497657826905, 476074241776188, 58963860817626567, 8475738174076417335, 1402598717609785850700, 265126817539686778513113, 56822367893441673215117997, 13712983199783483607459996660, 3702793973661590950848375537915
Offset: 0

Views

Author

Peter Luschny, Aug 13 2019

Keywords

Crossrefs

Cf. A125107 (row 0 of A327000), A048742 (row 1 of A327000), this sequence (row 2 of A327000).

Programs

  • Maple
    B := BellMatrix(n -> modp(n,2), 37): # defined in A264428.
    b := n -> add(k, k in B[2*n+1]):
    seq(euler(2*n+1, 0)*(-2)^(n+1) - b(n), n=0..18);

Formula

a(n) = (-2)^(n+1)*Euler(2*n+1, 0) - b(n) where b(n) is the sum of row 2*n + 1 of the Bell transform of n mod 2. The Bell transform is defined in A264428.
Showing 1-3 of 3 results.