cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A326999 a(n) = A327000(4, n) + A291975(n).

Original entry on oeis.org

1, 1, 36, 6306, 3156336, 3501788976, 7425169747776, 27322211071838736, 163058737794666253056, 1500955605765318574331136, 20488125782700503099836056576, 401537703770887804145153979250176, 10992280532048388256580758224034983936, 410332411533091221236570416481170032685056
Offset: 0

Views

Author

Peter Luschny, Aug 12 2019

Keywords

Crossrefs

Formula

a(n) = A309522(4, n) - A327001(4, n) + A291975(n).

A327001 Generalized Bell numbers, square array read by ascending antidiagonals, A(n, k) for n, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 4, 5, 8, 1, 1, 11, 31, 15, 16, 1, 1, 36, 365, 379, 52, 32, 1, 1, 127, 6271, 25323, 6556, 203, 64, 1, 1, 463, 129130, 3086331, 3068521, 150349, 877, 128, 1, 1, 1717, 2877421, 512251515, 3309362716, 583027547, 4373461, 4140, 256
Offset: 0

Views

Author

Peter Luschny, Aug 12 2019

Keywords

Examples

			[n\k][0  1   2        3        4           5             6]
[ - ] -----------------------------------------------------
[ 0 ] 1, 1,  2,       4,       8,         16,            32  A011782
[ 1 ] 1, 1,  2,       5,      15,         52,           203  A000110
[ 2 ] 1, 1,  4,      31,     379,       6556,        150349  A005046
[ 3 ] 1, 1, 11,     365,   25323,    3068521,     583027547  A291973
[ 4 ] 1, 1, 36,    6271, 3086331, 3309362716, 6626013560301  A291975
       A260878, A326998,
Formatted as a triangle:
[1]
[1, 1]
[1, 1,   2]
[1, 1,   2,    4]
[1, 1,   4,    5,     8]
[1, 1,  11,   31,    15,    16]
[1, 1,  36,  365,   379,   52,  32]
[1, 1, 127, 6271, 25323, 6556, 203, 64]
		

Crossrefs

A260876 (variant based on shapes).
Columns include: A260878, A326998.
Cf. A327000.

Programs

  • Maple
    A327001 := proc(n, k) option remember; if k = 0 then return 1 fi;
    add(binomial(n*k - 1, n*j) * A327001(n, j), j = 0..k-1) end:
    for n from 0 to 6 do seq(A327001(n, k), k=0..6) od; # row-wise
  • Mathematica
    A[n_, k_] := A[n, k] = If[k == 0, 1, Sum[Binomial[n*k-1, n*j]*A[n, j], {j, 0, k-1}]];
    Table[A[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 27 2022 *)

Formula

A(n, k) = Sum_{j=0..k-1} binomial(n*k - 1, n*j) * A(n, j) for k > 0, A(n, 0) = 1.

A327002 a(n) = A018893(n) - A291973(n).

Original entry on oeis.org

0, 0, 0, 10, 2574, 748616, 282846568, 141482705378, 93129791442534, 79703248816409088, 87547852413089111888, 121899005847224540133690, 212656111085108159911203710, 459737640779469178164281972792, 1218867518038879445116138285206008, 3923403293626677106527196012373423122
Offset: 0

Views

Author

Peter Luschny, Aug 13 2019

Keywords

Crossrefs

Cf. A018893, A291973, row 3 of A327000.

Programs

  • Maple
    CL := (f, x) -> PolynomialTools:-CoefficientList(f, x):
    A327002 := proc(n) local P, Q;
    P := proc(n) option remember; if n = 0 then return 1 fi;
    add(binomial(3*n, 3*k+3)*P(n-k-1)*x, k=0..n-1) end:
    Q := proc(n) option remember; if n = 0 then return 1 fi;
    add(binomial(3*n-1, 3*k)*Q(k)*Q(n-1-k), k=0..n-1) end:
    Q(n) - add(CL(P(n),x)[k+1]/k!, k=0..n) end:
    seq(A327002(n), n=0..15);

A326995 a(n) = A002105(n+1) - A005046(n), reduced tangent numbers minus the number of partitions of a 2*n-set into even blocks.

Original entry on oeis.org

0, 0, 0, 3, 117, 4500, 199155, 10499643, 663488532, 50115742365, 4497657826905, 476074241776188, 58963860817626567, 8475738174076417335, 1402598717609785850700, 265126817539686778513113, 56822367893441673215117997, 13712983199783483607459996660, 3702793973661590950848375537915
Offset: 0

Views

Author

Peter Luschny, Aug 13 2019

Keywords

Crossrefs

Cf. A125107 (row 0 of A327000), A048742 (row 1 of A327000), this sequence (row 2 of A327000).

Programs

  • Maple
    B := BellMatrix(n -> modp(n,2), 37): # defined in A264428.
    b := n -> add(k, k in B[2*n+1]):
    seq(euler(2*n+1, 0)*(-2)^(n+1) - b(n), n=0..18);

Formula

a(n) = (-2)^(n+1)*Euler(2*n+1, 0) - b(n) where b(n) is the sum of row 2*n + 1 of the Bell transform of n mod 2. The Bell transform is defined in A264428.
Showing 1-4 of 4 results.