Original entry on oeis.org
1, 1, 36, 6306, 3156336, 3501788976, 7425169747776, 27322211071838736, 163058737794666253056, 1500955605765318574331136, 20488125782700503099836056576, 401537703770887804145153979250176, 10992280532048388256580758224034983936, 410332411533091221236570416481170032685056
Offset: 0
A327001
Generalized Bell numbers, square array read by ascending antidiagonals, A(n, k) for n, k >= 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 4, 5, 8, 1, 1, 11, 31, 15, 16, 1, 1, 36, 365, 379, 52, 32, 1, 1, 127, 6271, 25323, 6556, 203, 64, 1, 1, 463, 129130, 3086331, 3068521, 150349, 877, 128, 1, 1, 1717, 2877421, 512251515, 3309362716, 583027547, 4373461, 4140, 256
Offset: 0
[n\k][0 1 2 3 4 5 6]
[ - ] -----------------------------------------------------
[ 0 ] 1, 1, 2, 4, 8, 16, 32 A011782
[ 1 ] 1, 1, 2, 5, 15, 52, 203 A000110
[ 2 ] 1, 1, 4, 31, 379, 6556, 150349 A005046
[ 3 ] 1, 1, 11, 365, 25323, 3068521, 583027547 A291973
[ 4 ] 1, 1, 36, 6271, 3086331, 3309362716, 6626013560301 A291975
A260878, A326998,
Formatted as a triangle:
[1]
[1, 1]
[1, 1, 2]
[1, 1, 2, 4]
[1, 1, 4, 5, 8]
[1, 1, 11, 31, 15, 16]
[1, 1, 36, 365, 379, 52, 32]
[1, 1, 127, 6271, 25323, 6556, 203, 64]
-
A327001 := proc(n, k) option remember; if k = 0 then return 1 fi;
add(binomial(n*k - 1, n*j) * A327001(n, j), j = 0..k-1) end:
for n from 0 to 6 do seq(A327001(n, k), k=0..6) od; # row-wise
-
A[n_, k_] := A[n, k] = If[k == 0, 1, Sum[Binomial[n*k-1, n*j]*A[n, j], {j, 0, k-1}]];
Table[A[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 27 2022 *)
Original entry on oeis.org
0, 0, 0, 10, 2574, 748616, 282846568, 141482705378, 93129791442534, 79703248816409088, 87547852413089111888, 121899005847224540133690, 212656111085108159911203710, 459737640779469178164281972792, 1218867518038879445116138285206008, 3923403293626677106527196012373423122
Offset: 0
-
CL := (f, x) -> PolynomialTools:-CoefficientList(f, x):
A327002 := proc(n) local P, Q;
P := proc(n) option remember; if n = 0 then return 1 fi;
add(binomial(3*n, 3*k+3)*P(n-k-1)*x, k=0..n-1) end:
Q := proc(n) option remember; if n = 0 then return 1 fi;
add(binomial(3*n-1, 3*k)*Q(k)*Q(n-1-k), k=0..n-1) end:
Q(n) - add(CL(P(n),x)[k+1]/k!, k=0..n) end:
seq(A327002(n), n=0..15);
A326995
a(n) = A002105(n+1) - A005046(n), reduced tangent numbers minus the number of partitions of a 2*n-set into even blocks.
Original entry on oeis.org
0, 0, 0, 3, 117, 4500, 199155, 10499643, 663488532, 50115742365, 4497657826905, 476074241776188, 58963860817626567, 8475738174076417335, 1402598717609785850700, 265126817539686778513113, 56822367893441673215117997, 13712983199783483607459996660, 3702793973661590950848375537915
Offset: 0
-
B := BellMatrix(n -> modp(n,2), 37): # defined in A264428.
b := n -> add(k, k in B[2*n+1]):
seq(euler(2*n+1, 0)*(-2)^(n+1) - b(n), n=0..18);
Showing 1-4 of 4 results.