cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125168 a(n) = gcd(n, A032741(n)) where A032741(n) is the number of proper divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 5, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 4, 1, 1, 3, 1, 1, 7, 1, 1, 5, 1, 1, 3, 1, 5, 3, 1, 1, 1, 1, 7, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 7, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 7
Offset: 1

Views

Author

Mitch Cervinka (puritan(AT)toast.net), Jan 12 2007

Keywords

Comments

First occurrence of k: 1, 4, 6, 16, 20, 3240000, 42, 256, 162, 18662400, 132, 5308416, 832, 784, 120, 65536, 612, 2985984, 912, 1600, 9240, 98010000, 1380, 1296, 100800, ..., (10^7). - Robert G. Wilson v, Jan 23 2007
Do all values appear? - Robert G. Wilson v, Jan 23 2007
From Bernard Schott, Oct 19 2019: (Start)
a(n) = 1 if n = p^k, p prime, k >= 0 and k <> p or,
n = p*q, p 3 or
n = p*q*r, p 7 or,
n = p^2*q, p 5 or
n = p^3*q, p 7.
a(n) = 2 if n = 2^2 or n = 2^(2*p), p prime <> 2,
a(n) = 3 if n = 3*p, p prime <> 3 or n = 3^3,
a(n) = 4 if n = 4*p^2, p prime,
a(n) = 5 if n = 5*p^2, p prime <> 5, or n = 25*p, p prime <> 5, or n = 5^5,
a(n) = 7 if n = 7*p*q with p 7 or n = 7*p^3, p prime <> 7, or n = 7^7,
a(n) = p if n = p^p, p prime. (End)

Examples

			a(6)=3 because 6 has 3 proper divisors {1,2,3} and gcd(6,3) is 3.
		

Crossrefs

Programs

Formula

a(n) = gcd(n, A032741(n)) = gcd(n, A062968(n)).

Extensions

More terms from Robert G. Wilson v, Jan 23 2007